逆转录反应,作为分子生物学研究的基本技术之一,已经广泛应用到多个研究领域,可以说是科研人员进行 RNA 功能研究的看家本事。众所周知,逆转录的应用领域有以下 6 种:逆转录聚合酶链式反应(RT-PCR)定量RT-PCR(RT-qPCR)cDNA 克隆和文库构建cDNA 末端快速扩增(RACE)基因表达芯片RNA 测序(RNA-Seq)今天,小编就整理了一些贴士,帮助大家在面对 6 种不同的应用时,如何正确选择逆转录酶。逆转录聚合酶链式反应(RT-PCR)在 RT-PCR 中,逆转录酶将 RNA 转化为 cDNA,然后通过 PCR 反应扩增 cDNA,为下游实验提供研究模板,因而逆转录酶是实验成功的关键步骤之一(如下图)。选定的逆转录酶应对所有样本均具有最高效率,即便是难转录 RNA 样本,如降解、抑制剂残留或具有高度二级结构的 RNA 样本。图. 逆转录聚合酶链式反应(RT-PCR)。RT =逆转录,RTase =逆转录酶常用的 RT-PCR 方法分为一步法和两步法,每种方法都各有优缺点,简要概述如下:表. 对比一步法和两步法 RT-PCR 定量 RT-PCR(RT-qPCR)定量 R
为了研究 RNA 的功能,通常需要通过反转录过程将 RNA 转化为更稳定的互补 DNA(cDNA)。之后 cDNA 可通过分子克隆、PCR 和测序等技术做进一步的研究。因此,反转录过程是许多 RNA 实验研究流程的关键步骤。为了获得更为准确的研究结果,本期总结了反转录过程中需要考虑的一些因素,以期能够抛砖引玉,给你的实验研究带来些许帮助。 本期内容RNA 模板制备基因组 DNA 的去除反转录酶选择引物选择主要反应组分反应温度和反应时间第一链和第二链 cDNA 合成注:本期内容较多,阅读完此文需要大概 8 分钟。 一、RNA 模板制备RNA 是反转录的模板。总 RNA 通常用于 RT-(q)PCR 等下游应用的 cDNA 合成,而特定类型的 RNA(如信使 RNA(mRNA)、miRNA 等小 RNA)可通过富集而用于某些实验应用,如 cDNA 文库构建和 miRNA 图谱分析。 保持 RNA 的完整性至关重要,在提取、处理、储存和实验过程中均需要采取特殊的保护措施。防止RNA降解的最佳方法包括佩戴手套、使用具有气溶胶屏障的移液器移液、使用无核酸酶的实验室器具和试剂以及对实验区域进行去污
各位做细胞培养的前辈后辈们,在细胞传代过程中,吹打是很关键的一步啊。能不能有效地快速把贴壁细胞吹打下来,关系到细胞后续的生长和实验啊。当吹打时产生很多泡沫的时候,很难在显微镜下观察清楚有没有完全把细胞吹打下来。所以,希望大家都来交流一下各自的秘诀吧。如何能避免少起泡沫呢。本人在试验中有些体会,写出来与大家共勉:1、有一些细胞可以不用消化液就能够吹打下来。个人认为能不用消化液是最好的。譬如巨噬细胞。我一直维持巨噬细胞,每次传代都不用消化液,吹打的时候我一般会用瓶内未换的剩余旧培养液,这样子比用新的培养基可以减少点泡沫的生成。当然这个一定要求原培养基未被污染。2、 吹打的时候我们都知道要一点挨着一点吹,这样子不会漏掉地方。而我每次都会首先沿着两条对角线的方向吹打,然后再按照横着或者是竖着吹打。这样子就可以比较容易把细胞吹下来,因为首先细胞的各个方向都受力了,而且比较均匀,细胞比较容易下来,而且对细胞形态的维护比较好。3、对胶头滴管的要求。胶头滴管头部最好是做成弯曲45度角的形状,一般都是自己用止血钳夹住头部在酒精灯上烧弯。我还发现,如果你吹打的时候,滴管的头部边缘如果是和吹打平面平行的话,
Julius:我的细胞被污染了,表现为培养液内有浑浊,可见很多白色粉末的东西悬浮,之前发现一瓶有,就丢了,剩下的及时换液,清洗,可在传代后的第二天就又见浑浊,仍有部分细胞是贴壁的,可以看到很多”细胞“首尾相连成一条条的线状,可细胞怎会是线状生长呢?请问是霉菌还是细菌污染呢?如何区分细菌,霉菌及真菌的污染。现在如何处理呢?污染控制区大家所说的用甲醛熏蒸,碘伏擦拭,或 75% 酒精 擦拭,是用那种呢?时间要多长呢?因培养箱内还有别人的细胞,现在消毒处理时剩余的细胞该怎么办呀?还应注意什么呢?liyq_1:应该是霉菌污染.其特点正是肉眼可见白色悬浮,形态呈线状.qxlbljys:1.细菌污染液体混浊,霉菌污染可看见霉苔但液体不混,所以你的细菌和霉菌同时污染处理:扔掉,以免污染其他细胞2.你说的线状生长实际上细胞已经接近死亡3.可以将培养箱用 75% 的酒精擦拭,并停止细胞培养,然后用紫外消毒房间sunandsuny:由于细菌的生长分裂呈指数级的生长方式,所以细菌污染后,培养瓶很快就是浑浊的了,但一般不像霉菌污染,霉菌有菌丝,往往呈絮状漂浮,甚至有丝状突起.因此霉菌污染和细菌污染在肉眼上有时可
一台 WB 成像系统可以同时拍摄化学发光和荧光信号,这个功能有什么用途呢?一篇 2014 年发表在 Cell Stem Cell 的文章为了研究硫巯基化如何影响信号通路,就需要在进行 Western Blot 时同时捕捉2种信号。蛋白质硫巯基化(S-sulfhydration, SHY)是一种依赖H2S的蛋白质翻译后修饰。H2S 作用于蛋白质的半胱氨酸残基,把巯基(-SH)转变为硫巯基(-SSH),改变蛋白空间结构,调控了蛋白的活性和功能。这篇文章主要研究硫化氢(H2S)调节 Ca2+ 通道硫巯基化,来维持间充质干细胞的功能和骨稳态。骨髓间充质干细胞产生H2S协助调节自我更新和成骨分化。H2S 缺乏会导致 Ca2+TRP 通道上多个半光氨酸残基的硫巯基化程度降低,产生钙内流异常。异常的钙内流会下调 PKC/Erk- 介导的 Wnt/β-catenin 信号,从而影响到成骨分化。结果提示通过无毒供体恢复 H2S 水平,可以治疗 H2S 缺乏导致的骨质疏松症等疾病。有趣的事情来了。在验证 H2S 通过 Ca2+ 通道的巯基化调节钙内流时,研究人员将 BMMSCs 分成了 2 组,一组使用
哺乳动物表达系统是适用于生成具有天然结构和活性的哺乳动物蛋白的首选表达平台,可以实现最高水平的翻译后加工,使蛋白质获得最佳功能活性,适合在最类似生理学的环境中研究特定蛋白质的功能。它常用于抗体和治疗性蛋白质以及人类功能细胞分析的蛋白质表达。和稳定表达相比,哺乳动物瞬时表达系统可实现灵活且快速的蛋白质生产,可以在 1-2 周内生成大量蛋白质,适用于人或其他哺乳动物蛋白的表达,和大肠杆菌、酵母或昆虫细胞等宿主表达系统相比,可实现更天然的折叠和翻译后修饰——包括糖基化(图 1)。图 1、哺乳动物蛋白表达系统的比较。低风险的蛋白表达系统助力科学研究对于蛋白表达来说,为特定应用选择合适的表达系统是成功的关键。在选择表达系统时,蛋白质溶解度、功能、纯化速度和产量通常是最重要的考虑因素。此外,每种系统均有其各自的优势和局限性,在选择表达系统时必须考虑,其中最常用的表达系统是 293 和 CHO 表达系统,根据表达的蛋白和研发阶段,选择最适合的表达系统至关重要。 文章来源:赛默飞世尔科技
某个实验间隙…萌新:开题报告已提交,转眼 1 个月过去了,实验还是一头雾水,为啥我的 co-IP 拉不下来蛋白?奋斗中的师兄:我当初正好相反,拉下来的蛋白被抗体条带覆盖住了,换个抗体忒不好找,无奈换了个蛋白,还好挺顺利。大师兄:蛋白吧,不但种类多,理化性质差异较大,关键它们又喜欢组队在细胞里干活,IP、co-IP 又是常用的手段,掌握好这个工具还是很重要的,总不能随随便便就换个蛋白。那要怎么快速掌握这项实验,轻松搞定各种疑难杂症呢?我们依据三十多年的 IP/co-IP 实验经验,总结了一线技术支持常被问到的问题,希望这篇纯干货能帮助大家顺利升级打怪,早日驾驭 IP、co-IP。IP、co-IP、pull-down 简介IP(Immunoprecipitation),免疫沉淀:是利用固定在磁珠或琼脂糖树脂等基质上的特异性抗体对抗原进行小型亲和纯化的一种方法Co-IP(co-Immunoprecipitation),免疫共沉淀: co-IP 是一种常用的鉴定蛋白-蛋白相互作用的方法,其基本实验流程和IP类似,通过使用诱饵蛋白(IP 中的抗原,bait protein)特异性抗体间接捕获与其
RNA 干扰(RNAi)是一种转录后基因沉默的机制。同时也是一项成熟的实验技术,它的出现彻底改变了研究人员研究哺乳动物基因表达的方式,并持续为如今的基因功能研究提供有价值的实验结果。RNAi 技术大大提高了在哺乳动物细胞和动物模型中进行基因功能缺失分析的便利性、速度和特异性,因此长期以来一直是深受研究人员信赖的一种选择。小干扰 RNA(siRNA)是 RNAi 技术中最为常用的一种手段,其在基础研究中已经发挥了巨大的作用。回到最基础的实验中,尽管已经非常成熟,想要顺利开展 siRNA 实验并拿到可靠的实验结果却不是那么容易的,除了选择高质量的稳定的siRNA 产品之外,还有很多实验设计和操作方面的注意事项。今天我们为大家总结了成功开展 siRNA 实验的十大秘诀。1.每个基因设计并测试两到四条 siRNA 序列为了找到一个潜在的靶点,分析感兴趣基因的全长寻找氨基酸序列。记录氨基酸和3′ 19核苷酸作为潜在的 siRNA 靶点。潜在的靶点随后通过对 GenBank 数据库的 BLAST 分析进行评估,去掉任何与其他基因有显著同源性的靶序列。如果可能的话,应该针对含有更少二级结构的靶 mR
生成全长转录组使用 Ambion 转录试剂盒合成的大多数 DNA 模板都可以生成全长转录组,无需任何优化。然而,一些模板可能产生过早终止的产物,如较小的离散带或拖尾/降解产物。对于印迹杂交,通常不需要全长 RNA 探针。然而,对于许多其他分析,至关重要的是转录进行到模板的末端,全部生成同一种大下的转录组(例如 NPA,体外翻译研究和结构分析)。转录反应失败或不良的两个最常见因素是标记核苷酸中的抑制剂和质量较差的 DNA 模板。应执行一系列简单的实验来确定转录反应失败的原因;随附的流程图概述了这一过程。以下列出了其他一些策略,用于增加有问题的转录反应中的全长产物比例。增加限制性核苷酸的浓度用最低浓度的标记核苷酸进行转录反应,可能由于核苷酸浓度不足而产生过早终止的转录组。增加限制性核苷酸的浓度通常会提高全长转录组的产量。降低反应的孵育温度通常,转录反应在室温或 37°C 下进行。将温度降低至约 16°C 或甚至 4°C 有时可以改善转录反应。人们认为,较低的反应温度会减慢聚合酶的进展,从而防止其被二级结构或一个特定核苷酸串置换。(想象一下玩具火车全速绕弯前行与缓慢绕同一条路线前行。)使用不
PCR 酶数量如此之多,选择正确的酶可能是一项挑战。用于扩增 DNA 的各种酶的保真性、扩增速度和特异性各不相同。以下三个问题可以帮助您解答选择 PCR 酶时需要重点关注的因素。Q 1:您需要确保序列准确性吗?有时您只需要检测 PCR 产物或估算其大小,例如在对小鼠进行基因分型或筛选重组克隆时。对于这种类型的常规 PCR 分析,您应该使用标准的热稳定 DNA 聚合酶(如 Taq DNA 聚合酶)来确认目的 DNA 存在与否。但是,如果要执行克隆实验或下一代测序(NGS),那么准确性至关重要。为了确保准确进行 DNA 拷贝,请确保选择高保真 DNA 聚合酶。高保真 PCR 酶具有 3'-5’ 核酸外切酶校对活性。当结合错误匹配的碱基对时,DNA 聚合酶停顿,导致合成暂延。合成暂延 允许去除错误匹配的核苷酸并使用正确的核苷酸取代。保持序列准确的 DNA 聚合酶的绝佳选择是 Invitrogen SuperFi 或 Thermo Scientific Phusion 高保真DNA聚合酶。这两种酶具有高保真度,准确度是 Taq DNA 聚合酶的 300 倍或 52 倍,并且具有很高的产率。Q
PCR 是众所周知的分子生物学技术之一。20 世纪 70 年代,研究人员首次报道了使用合成引物和 DNA 聚合酶从模板复制单链 DNA。然而直到 1983 年,Kary Mullis 才发明出用于扩增目标 DNA 的研究工具,就是我们今天所熟知的 PCR 方法。从此以后,PCR 成为分子生物学研究必不可少的一部分,被广泛应用于基础研究、疾病诊断、农业检测和法医调查等领域。1.基因表达通常可通过 PCR 来检测不同细胞类型、组织和生物体在特定时间点的基因表达差异。首先,从目标样品中分离出 RNA 并将mRNA逆转录成 cDNA。随后,通过由PCR扩增的cDNA数量,确定 mRNA 的初始水平。这一过程也被称为逆转录 PCR, RT-PCR (图 1)。图 1. RT-PCR.RNA 被逆转录成 cDNA,随后通过 PCR 扩增 cDNA终点 PCR 可通过凝胶里的扩增产物条带强度对 RNA 的表达进行定量(一种半定量方法)。例如,对起始 cDNA 进行连续稀释并扩增。通过凝胶电泳使不同起始量的终点 PCR 得率可视化(图 2),然后对条带强度进行定量,并以管家基因为参照进行标准化,预估扩
开篇之前先问个小问题您知道 PCR 的中文全称是什么吗?▼▼▼这是小编参加研究生面试时导师问的第一个问题,当时简直不敢相信自己的耳朵。如果您和我一样有片刻的犹豫,请备好小板凳,我们一起回顾一下简单 PCR 中那些需要我们了解的小知识。 PCR 基础知识PCR(Polymerase Chain Reaction),中文全称为聚合酶链式反应,是分子生物学研究中最为广泛应用的技术。在 70 年代的时候首次报道使用聚合酶及合成引物进行单链 DNA 的扩增,但直到 1983 年才正式作为一种研究工具用于 DNA 的扩增。自此以后,PCR 成为分子生物学研究不可缺少的一部分,被应用于从基础研究到疾病诊断、农业检测及法医调查等领域。其发明者 Kally Mullis 因此获得了 1993 年的诺贝尔化学奖。PCR 可在短时间内将单个 DNA 扩增得到成千上万个拷贝。其过程主要由 3 步组成:(1)变性,双链 DNA 经加热变成单链DNA;(2)退火,引物与模板的特异性结合;(3)延伸,DNA 聚合酶沿着模板,将引物的3’端延伸。 PCR 反应体系中的 6 大关键组分PCR 的成功取决于很多因素,其反
童鞋们都知道,要想成为真正的 PCR 达人,并非易事。一个小小的环节都可能让整个实验挂掉,也正是因此,PCR 成为了资深科研者们心中的痛。不要说实验本身,其实就连实验的耗材都隐藏着大学问,工欲善其事,必先利其器。今天我们就具体来说下 PCR 耗材中选择选择反应板的问题。PCR 板通常采用 96 孔和 384 孔的形式,其次为 24 孔和 48 孔。使用的 PCR 仪和正在进行的应用的性质将决定 PCR 板是否适合您的实验。裙边PCR 板的“裙”是板周围的板。裙边可为反应体系构建时的移液过程提供较好的稳定性,以及在进行自动机械处理时提供更好的机械强度。PCR 平板可分为无裙边,半裙边和全裙边。无裙边板缺少周围的面板(图 A)。这种形式的反应板可与绝大多数 PCR 仪和实时 PCR 仪的模块适配,但不适用于自动化应用。半裙边板在板的边缘周围具有短的边缘(图 B),在移液过程中提供足够的支撑,Applied Biosystems PCR 仪大多数均采用半裙边板。全裙边的 PCR 板具有覆盖板高度的边缘面板(图 C)。这种板形式适用于具有突出模块的 PCR 仪(可有利于自动化操作),可安全稳固
核酸电泳在许多分子生物学研究应用中都可用来检验实验结果,有时也可用于分离和纯化样品,以便进行后续应用。因此,常规核酸电泳的应用通常可以分为分析和制备两种类型,两者均依赖于分离、溶解和定量技术。 1.用于确认实验结果的分析型电泳在进入下一步工作流程或另一组实验之前,可使用分析型核酸电泳检验实验结果。正如下文所述,该方法主要针对凝胶中是否存在目标条带,以及条带的强度、迁移模式、迁移率和杂交情况进行评估。a. 检验酶促合成、消化和克隆实验是否成功核酸的电泳分析通常在以下技术(图 1)后立即进行以确定实验的成功和效率: 在几个小时内,聚合酶链式反应或 PCR 将目标序列的一个拷贝放大到数百万份拷贝。在终点 PCR 之后进行电泳,以确认靶标的扩增及其产量。在与限制酶反应以切割 DNA 底物上特定序列的限制消化反应后,在凝胶上运行的样品来确定 DNA 切割模式(以及消化完成的程度)。在分子克隆中,通过称为 连接的过程将 DNA 片段插入载体中。在一些情况下,可以在连接后进行电泳以评估反应效率(图 2)。然后将连接产物用于转化克隆生物体的 感受态细胞,如 大肠杆菌繁殖,然后筛选形成的菌落以确定它们是
凝胶电泳是许多分子生物学实验的重要部分。建立核酸电泳需采取一系列步骤来实现核酸样品的最佳分离和分析。核酸凝胶电泳工作流程1、选择和制备凝胶琼脂糖和聚丙烯酰胺是核酸分离中最常用的两种凝胶基质。两种材料都是三维基质,孔径大小适合核酸分离,且与样品间无反应。可通过改变基质的百分比来调整孔径大小,从而有效分离不同大小的核酸。有关琼脂糖凝胶和聚丙烯酰胺之间的选择,主要取决于核酸样品的大小和所希望达到的分辨率,虽然凝胶灌制和样品回收的方法也可考虑(表 1)。琼脂糖凝胶的孔径大小非常理想,可分离 0.1-25 kb 范围内的核酸分子。聚丙烯酰胺形成的孔径较小,可用于分离小于1 kb 的核酸分子。某些情况下,可采用聚丙烯酰胺凝胶以获得片段小于 100 bp 的单碱基分辨率[1]。表 1. 琼脂糖凝胶和聚丙烯酰胺凝胶之间的差异2. 准备标准品和样品a .核酸标准品选择当运行凝胶时,含有已知大小的核酸参照样品通常被称为标准品、标记或分子量标准,用于目的样品大小的估计。在为给定样品选择合适的分子量标准时,需考虑如下因素:Ladde 类型(例如 DNA 或 RNA),片段结构(例如单链或双链),构象(例如超螺
《分子克隆》虽然伟大的、人手必备的“分子生物学宝典”——《分子克隆》——里涵盖了分子生物学领域几乎各种基础技术(新中文版三册足足 3.5 公斤,知识就这么沉重),但实际咱们平时说的分子克隆技术主要是指将含有“目的基因的 DNA 片段”以“体外重组技术”插入某种 DNA 载体上,得到一个重组 DNA 分子。分子克隆技术现在早已算不上是“超酷”的前沿技术,只能算分子生物学基础入门技术,但它依然是整个分子生物学基础的核心之一,熟练掌握分子克隆技术之关键、又快又准地完成分子克隆依然是实验必需的看家本领。经典分子克隆技术vs无缝组装克隆技术技术总是随着时间向前发展的,由难到易,化繁为简,将不能变为可能。分子克隆技术的发展完美体现了这一点。 以构建表达载体为例,经典分子克隆中,要将目标片段插入载体,全靠内切酶的拆分和连接酶的拼接。关键是选择合适的酶切位点,使得酶切“拆”得的目标片段末端和相应载体末端正好能互补“拼”在一起,连接酶才能连起来。选择酶时首先不能破坏目标基因完整性(包含从起始密码到终止密码)及载体完整性;其次,尽量避免选两个酶切生成粘端一样的(粘端互补)——两边粘端一样的载体“偏爱”自我
上篇我们对经典分子克隆技术和无缝组装克隆技术进行了比较,经典分子克隆兜兜转转、如琢如磨,而无缝组装克隆技术却能做到操作简单和方便快捷。那它究竟是如何实现的呢?本期我们就来具体聊聊无缝克隆的四步致胜奇招。无缝组装克隆之 Step 123——带你飞,把还在用传统方法“琢磨”的他甩在后面基于同源序列的无缝组装克隆技术,关键是利用 PCR 引物,在目标片段两端引入与线性化载体两端同源的一段序列。基本策略是选定插入外源片段的位置,以此线性化载体设计包含线性化载体两端序列和目标片段两端序列的引物,扩增目标片段扩增片段与线性化载体、组装预混酶混合反应转化感受态细胞 · Step 1 · 如果载体上正好有合适插入目标片段的酶切位点,酶切载体使之线性化。为了降低单酶切载体不完全的几率,减少载体自连和提高筛选成功率,强烈建议双酶切——后面一个切点只要距离第一个切点 5 个碱基以上就行(主要是给两个酶留出结合空间)。如果没有合适的酶切位点,根据选定插入位点设计引物,用反向 PCR 来获得线性化载体。在多片段组装克隆的世界里,凡是酶切搞不定的,统统 PCR 引物设计搞定。简单粗暴有效。 · Step 2 ·
细胞培养物污染往往是细胞培养实验室中最常见的问题,有时会造成非常严重的后果。细胞培养污染物可分为两大类,一类是化学污染物,如培养基、血清和水中的杂质,包括内毒素、增塑剂和洗涤剂,另一类是生物污染物,如细菌、霉菌、酵母、病毒和支原体,以及其他细胞系的交叉污染。虽然污染无法完全消除,但可以通过全面了解其来源并遵循良好的无菌技术来降低污染的发生频率和严重性。本文将概述主要的生物污染类型。细菌细菌是一大类普遍存在的单细胞微生物。细菌的直径通常只有几微米,其形状多样,如球状、杆状和螺旋状等。由于分布广泛、生长迅速和体积大小等特点,细菌以及酵母和霉菌是细胞培养中最常见的生物污染物。细菌污染在培养物感染后几天内就很容易被肉眼观察到;受感染的培养物通常会变得浑浊,有时表面会有一层薄膜。经常还会出现培养基的 pH 值突然下降的情况。在低倍显微镜下,细菌以细小颗粒的形式出现在细胞之间,在高倍显微镜下观察可以分辨出单个细菌的形状。下面的模拟图像显示了贴壁培养的 293 细胞被大肠杆菌污染。酵母酵母是真菌界中的单细胞真核微生物,大小从几微米(常见)到 40 µm(罕见)不等。与细菌污染一样,被酵母污染的培养物
商品化试剂和培养基均经过严格的质量控制以保证其无菌,但它们在操作过程中可能被污染。请遵循以下指导原则进行无菌操作,避免污染。请始终使用适当的灭菌方法(如高压灭菌器、除菌过滤器)对实验室中配制的任何试剂、培养基或溶液进行灭菌。无菌操作请始终用 70% 乙醇擦拭双手和工作区。将容器、培养瓶、培养板和培养皿放入细胞培养通风橱之前,先用 70% 乙醇擦拭其外部。不要直接从试剂瓶或培养瓶中倾倒培养基和试剂。使用无菌玻璃或一次性塑料移液管和移液器操作液体时,每只移液管只能使用一次,以避免交叉污染。无菌移液管到使用时才能打开其包装。移液管应存放在工作区内。试剂瓶和培养瓶使用后应盖上盖子,多孔板应用胶带密封或放入可重复密封的袋中,以防止微生物和悬浮污染物进入。无菌培养瓶、试剂瓶和培养皿等到使用时才能打开盖子,不得将其开放暴露在环境中。使用后,应立即盖好盖子。盖子取下后,必须开口朝下放置在工作台面上。必须使用无菌的玻璃器皿和其他设备。进行无菌操作时,不要交谈、唱歌或吹口哨。尽可能快速地进行实验,以降低污染风险。 文章来源:赛默飞世尔科技
转染是将核酸导入真核细胞中的过程,是细胞生物学、基因表达和基因抑制实验中的关键步骤。转染是采用除病毒感染外的其他方法将核酸(DNA 或 RNA)人工导入细胞的过程。采用各种化学、生物学或物理方法导入外源性核酸会改变细胞的特性,从而实现细胞基因功能和蛋白质表达研究。转染后,导入的核酸可以瞬时性地存在于细胞内,只表达一段时间且不会复制,也可以稳定地整合至受体基因组内,随着宿主基因组的复制而复制。转染的目的转染的两个主要目的是生成重组蛋白,或特异性地提升或抑制转染细胞中的基因表达。因此,转染是一种功能强大的分析工具,可用于基因或基因产物的功能和调控研究,用于生成转基因生物,并用作基因治疗方法。基因表达转染最常通过使用质粒载体或 mRNA 在培养细胞(或动物模型)中表达目的蛋白。利用真核细胞中的蛋白表达可以生成经过适当折叠和翻译后修饰的重组蛋白。另外,将带有可检测的标记物及其他修饰的蛋白质导入细胞,可用于启动子和增强子序列或蛋白: 蛋白相互作用的研究。此外,根据转染策略的不同,转染还可应用于各种形式的生物生产。例如,导入重编程转录因子可以生成诱导多能性干细胞(iPSC)。另一方面,稳定转染提供