DNA 序列的改变称为突变, 这将导致相关蛋白质的序列变化。 DNA 上特定核苷的取代技术称作基因定位突变法 (site directed mutagenesis)。 通过病酶动物将突变的基因导入微生物体内即可产生非天然蛋白. 这种方法在研究蛋白质中特定氨基酸的功能上极为有价值。与定位突变不同, 在 PCR 中增加 Mg2 离子可产生随机点突变; 高盐度降低了 DNA 聚合酶的再现精度。突变频率可由离子浓度控制。这种方法称作"易错 PCR"。将突变基因重组在加速产生多样性方面较定位突变效率更高
摘要: 体外通过基因工程手段所构建的含目的基因的重组质粒,选用转化和筛选技术,可获得含重组的阳性克隆. 实验原理: 体外通过基因工程手段所构建的含目的基因的重组质粒,选用转化和筛选技术,可获得含重组的阳性克隆.在此阳性克隆中, DNA 可在生物体系中大量扩增,繁殖,保存以及表达目的基因的产物,这是PCR体外扩增DNA所不能替代的.配合DNA重组
最近,在后基因组时代纷繁的信息中,生物芯片看起来成了最重要的研究工具之一。生物芯片与电子工程学中的硅半导体芯片非常相似。高密度小尺寸的DNA和蛋白质芯片被用来筛选生物信息,以便于更快更好的研究。DNA芯片是现代芯片技术中最成功的案例。DNA技术使用了DNA双螺旋链中A-T和G-C这样的Watson-Crick对的的典型的性质以及对互补序列识别的性质。换句话说,DNA芯片上的单链被当作诱饵,而当加入DNA试样时候,只有其互补链与之成键。DNA芯片能包含数千到数十万种DNA诱饵,这样就可以筛选
1.生物磁珠具有小尺寸效应和表面效应,能够用高效DNA提取,满足微量生物样本DNA提取的要求。 2.磁珠表面能够进行化学修饰,从而与DNA进行特异性吸附,去除样品DNA溶液中的抑制物质,如:有机溶剂、去污剂、金属离子、燃料等。 3.生物磁珠表面功能团数量可以控制获得可提取DNA溶液的浓度信息,实现定量的要求。 4.生物磁珠可以通过特殊的合成工艺使其具有超顺磁特性,因此,能够通过仪器进行自动化操作,满足数据库建设对大批量样本提取的需要,减少人为因素。 5.用时少,操作