丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

免疫PCR系列五-免疫PCR要点与注意事项

互联网

5504

一、免疫PCR要点

(1)连接分子

免疫PCR需要适当的连接分子连接报告分子和抗原抗体复合物。1 992年Sano用重组的链亲和素-蛋白A嵌合体作为连接分子,创立了免疫PCR技术。该融合蛋白的蛋白A可结合抗体的Fc段,链亲和素可结合DNA分子上的生物素,Sano利用此连接分子把一段生物素化的DNA(PUC19质粒DNA)连接到固定在酶标板上的抗原抗体复合物上,成功的检测到了牛血清蛋白,比传统ELISA法的敏感生105倍。

1993年,Ruzicha用生物素化单抗-亲和素-生物素化DNA分子复合体代替链亲和素-蛋白A嵌合体连接的单抗DNA复合体。

Zhou等人发现链亲和素(streptavidin)不含糖基,做连接分子特异性优于亲和素(avidin);Marian进一步指出中性链亲和素(neutravidin)特异性比链亲和素更佳,因为前者是一种经过特殊修饰了的亲和素,大大降低了非特异性吸附的可能。此后链亲和素(亲和素)系统被广泛应用,二者作为免疫PCR的连接分子各有优缺点。

链亲和素-蛋白A嵌合体均一稳定,结果重复性好,并且此嵌合蛋白可以利用工程菌大量生产,价格低廉。但目前尚无商品化的产品可以利用,且蛋白A可以结合非特异性吸附的抗体或用于捕获抗原的抗体的Fc段,使之不能用于夹心法。预先把特异性抗体和该连接分子制成复合物可解决上述问题,用抗体的Fab或F(ab′)2段代替捕获抗原的一抗也可克服以上困难。

生物素、链亲和素系统有商品化的生物素标记的二抗和游离链亲和素可以利用,因而被国内外学者广泛采用。但亲和素为四价化合物,在制备亲和素-生物素化DNA复合体(avidin-biotinylated-DNA complex ABD complex)时会出现3种情况5种分子,即游离亲和素、部分饱和亲和素(结合1-3个生物素分子)、饱和亲和素。

只有部分饱和亲和素对检测有用,其他两种情况不但对检测无用而且占用检测位点,降低免疫PCR的敏感性。有的学者采用分别加入生物素化二抗、游离亲和素生物素化DNA分子的方法克服了以上缺点,但延长了检测周期,使检测步骤繁锁,增加了系统误差。有人用2-亚氨基生物素做配基的琼脂糖珠亲和层析法制备ABD复合物,克服了以上不足。

(2)报告分子

理论上任何一段序列已知、可有效扩增的DNA都可作为免疫PCR的报告分子,但考虑到DNA序列的同源性和用于PCR扩增的效率问题,该报告分子和PCR扩增系统必须保证有良好的扩增效果,有近似理论的扩增率,该报告分子与反应体系中可能存在DNA分子不应有同源性,以避免因DNA污染,而出现特异性扩增。

继Sano用PUC19质粒后,国内外学者先后用PINM30、λ噬菌体、舌兰病毒等作为报告分子,取得了良好的效果。

郑永晨研究发现线性化的腺病毒六邻体(AdAt)基因重组质粒非常适于做免疫PCR的报告分子。目前免疫PCR的报告分子多数是用DNA聚合酶将生物素化的碱基聚合到DNA末端,理论上一条DNA链上只标记一个生物素分子才具有最高的敏感性。

AdAt质粒易于制备和纯化,分子较单一,不易出现非特异扩增,经Hind Ⅲ 酶切后粘性末端上只有加一个生物素分子,保证了免疫PCR的最高敏感性。

质粒pHNL10含有编码木薯羟基腈裂解酶的基因,该基因片段是从木薯cDNA文库中经PCR扩增所得,植物DNA与检测系统中可能存在的任何DNA都不同源,用它做免疫PCR的报告分子,可避免因DNA污染而造成的非特异性扩增。

(3)免疫PCR的载体

由于适合抗原抗体反应的酶标板不能插入普通PCR仪进行PCR反应,Sano先在酶标板上进行抗原抗体反应和报告分子的连接反应,然后经过热变性,把酶标板上的报告分子转移到普通PCR管中进行PCR反应。此法简单、经济,但步骤繁锁,容易在转移过程中丢失样品,系统误差大,结果不稳定。

国外有人用特殊的96孔中V形板做载体,所有步骤均在同一板上进行,最后插入特殊的PCR仪进行扩增。此法克服了上述缺点,但需特殊的PCR仪,价格昂贵,目前尚不能在国内推广普及。

用于PCR反应的eppendof管多用聚氯乙烯,在材料上有别于酶标反应板,不适合包被抗原(抗体)。徐平西等人用戊二醛做包被剂将抗原(抗体)高效率地包被于普通PCR管,使免疫PCR能利用普通PCR仪在同一管中连贯进行。

(4)免疫PCR的显示系统

最基本的显示方法是凝胶电泳法。PCR产物经葡聚糖凝胶电泳后,EB染色,紫外线灯下观察或照像,出现特异性扩增带为阳性。也有人将电泳后的PCR产物印记在硝酸纤维素膜上进行核酸杂交,以杂交信号显示检测结果。

另外也可不用电泳,在PCR扩增时用放射性同位素、荧光素、生物素、酶等标记引物,使PCR产物带有一定标记,然后通过放射自显影、荧光显微镜、酶底物显色等显示检测结果。

凝胶电泳法既适合单抗原的检测,又适合多抗原的检测,且能区分PCR产物的特异性扩增带和非特异性扩增带,除了EB染液对人体有害需防护外,对环境基本无污染,因而被广泛应用。其他方法一般只适合于单抗原检测,对引物要求较高,且无法区分非特异性扩增带,因此应用较少。


(5)假阳性的控制

充分洗涤是必要的,有的学者总共用了50多次洗涤,最大限度地消除了非特异性吸附,但同时也增加了检测步骤,延长了检测周期。充分封闭非特异性结合位点也至关重要,常用的封闭剂有牛血清蛋白(BSA)、脱脂奶粉、鲑鱼精DNA,Chang在PBS中加入2%的BSA取得了良好的效果。适当降低报告分子的浓度,采用不等量引物(适当减少其中一种引物的浓度)均可减少非特异性扩增,提高特异性。另外应设立假阳性指示分子和阴性对照。

免疫PCR优化策略及改进

(1)免疫PCR的优化策略--新型连接分子的出现

1)叶绿素分子和链酶卵白素

乔生军等用自然界普遍存在的叶绿素分子(chlorophy)作为共价连接蛋白与核酸的中间分子,构建了甲胎蛋白(AFP)抗体的基因探针,此探针人为地把抗体直接锚定在双链DNA分子上,复合分子性质均一稳定,室温至少保存6个月,大大简化了中间步骤,降低了成本,使免疫PCR更易推广。也有人用链酶卵白素将生物素化的抗体与生物素化的DNA分子直接连接,也得了良好的较果。

2)双特异融合蛋白

任军将编码单链抗体和链亲和素融合蛋白的基因插入载体在大肠杆菌中进行表达,获得了具备结合生物素和抗原分子的双特异性融合蛋白,可直接连接抗体和生物素化的DNA分子。该融合蛋白可利用工程菌大量制备,性质优良,价格低廉。

3)生物素化F(ab′)2段代替生物素化单抗

抗体的Fab或F(ab′)2易于标记,且因缺乏Fc段大大降低了非特异性吸附的可能性,使免疫PCR的本底大为降低。Yashito用胃蛋白酶消化单抗,把得到的Fab段用生物素标记,以此来检测ANP,使其特异性大为提高。

(2)免疫-PCR的改进

虽然Sano等人构建的免疫-PCR具有极高的灵敏度,但Sano所用的连接分子链亲和素-蛋白A嵌合体还没有商品化,因此限制了它在实际应用中的广泛普及。Ruzicka等人以生物素化的抗体取代Sano免疫-PCR系统中的抗体,用商品化的亲和素代替链亲和素-蛋白A嵌合体作为连接分子构建了一个新的免疫-PCR系统。Ruzicka用此免疫-PCR系统检测小鼠抗载脂蛋白E抗体。可以检测出包被浓度为10fg/ml的E抗体。此外,Sano的免疫-PCR实验流程需要众多的洗涤步骤,使实验过程相当繁琐,并需要大量的操作时间。Zhou等人对此作了改进,他们用生物素化的二抗和游离链亲和素作为连接分子进行免疫-PCR实验,把每个步骤的洗涤次数从原先的7~15次减至3~5次,从而减少了操作时间,但不影响实验结果的准确性。另外,用修饰过的抗原稀释缓冲液(modified antigen dilution buffer, MADB)代替Sano免疫-PCR中的TBS作为抗原稀释液,它主要把TBS中胍的浓度调到2M,由此解决了抗原的溶解问题。Zhou检测了人原癌基因ETSI,检测浓度可达到9.6×10-15M,是常规ELISA的105倍。与Sano的免疫-PCR系统相比,Ruizicka和Zhou所用的方法不需要特殊的试剂,生物素和亲和素(链亲和素)都已经商品化,因此在实际操作中得到广泛应用。但直接包被待检抗原不适用于临床标本和难以吸附固相抗原的检测。随后在一系列实验中建立了各种夹心免疫-PCR,扩大了检测范围。然而亲和素(链亲和素)作为一个连接分子对生物素的结合具有4价特性,亲和素与生物素化DNA结合可得到5种不同产物,即游离亲和素、结合饱和亲和素和部分饱和亲和素才能在检测过程中发挥作用,游离亲和素与固相中生物素化抗体结合会降低方法的敏感性。

(3)免疫-PCR新技术--多分析物免疫-PCR

在以上的免疫-PCR实验中,生物素化的DNA通过不同的生物素结合试剂(链亲和素、亲和 素)连接到生物素化的抗体上。这样,DNA标记和抗体就被组装在同一位点上,因此可能产生可变的化学计量。另外它需要额外的步骤加入生物素试剂和连接试剂,并需要众多的洗涤步骤去除过量的试剂和非特异性连接试剂的实验组分,作为一个免疫-PCR实验就相当复杂且需要相当多的操作时间。Hendrickson等人用异双功能化学交联剂预先连接好抗体和ssDNA标记,形成标记DNA-抗体偶联物。特别是,他将不同的抗体标上特异的DNA序列,形成一种新的、基于双抗夹心免疫模式的免疫-PCR,并可同时检测多种抗原,避免了免疫实验敏感性的限制和在一个实验中检测抗原的种类。而且,免疫-PCR夹心模式可以用常规的免疫实验完成。这样就大大降低了原先免疫-PCR实验的复杂性,并减少了大量的操作时间。这种免疫-PCR系统的关键改进就是用异双功能化学关联剂制备标记DNA-抗体偶联物。制备过程如下:

1) 氨基修饰寡核苷酸与SATA反应,形成乙酰硫代乙酰修饰DNA.

2) Sulfo-SMCC与抗体反应,形成马来酰亚胺修饰抗体。


3) 混合马来酰亚胺修饰抗体和乙酰硫代乙酰修饰DNA,并加入羟胺盐酸,在黑暗条件下反应,使抗体和标记DNA偶联。

4) 反应混合物用HPLC凝胶过滤纯化偶联物,收集的偶联物在4℃下保存。

在这偶联物中,ssDNA是连在抗体的Fc段上,因此并不影响抗体的活性。Hendrickson用此方法把设计独特的三种寡核苷酸(分别为55、85、95个碱基)分别共价连接到三种分析物hTSH、hCG、β-Gal的特异性抗体上,每一个寡核苷酸标记物含有相同的引物序列。这样,一对引物就可以促成三种DNA的共同扩增,Hendrickson用预先制备好的三种抗体-RNA偶联物同时检测hTSH、hCG、β-Gal实验使用双抗夹心模式。实验结果表明,分析物检测的敏感度超过普通ELISA约三个数量级。

由于化学合成寡核苷酸标记物序列长度不能超过100个碱基。因此,在多分析物免疫-PCR实验中,ssDNA标记物和引物的设计就受到了限制。Joerger等人用dsDNA作为标记物与抗体偶联。几千个bp的dsDNA可以通过生物学和生物化学方法制备。Joerger通过PCR和单向缺失在以Puc18为基础的重组质粒上制备了各种长度、具有相同引物序列的的dsDNA,选择适合长度的dsDNA作为特异性抗体的标记物。另外,在免疫-PCR实验中,dsDNA比ssDNA具有更多的优越性。DsDNA中的一条链跟抗体的Fc段连接,另一条链在PCR第一步变性步骤中就释放到溶液中,使链复制没有空间位阻。而且dsDNA比ssDNA具有更高的稳定性。此外,长链DNA分子更容易用荧光标记和光吸收检测,并且可以引入更多的非同位素标记,序列长度的提高可以促进杂合检测。

二、免疫PCR注意事项

本实验的关键步骤是获得适当的抗体-DNA复合物。用链亲和素将生物素标记的抗体与生物素标记的DNA偶联的方法,因每个链亲和素分子可与四个生物素分子结合,因此要优化反应条件,以使得每个链亲和素分子既能结合上抗体分子,又能结合上DNA。

此外,还可用化学方法将DNA与抗体分子共价偶联,即将抗体分子和5‘端氨基酸修饰的DNA分别用不同的双功能偶联剂激活,然后通过自发的反应偶联到一起,比如,用N-Succinimidyl-S-acetyl thioacetate(SATA)活化氨基修饰的DNA,用Sulfo-Succinimidyl 4-(maleimidomethyl) Cyclohexane-1-Carboxylate(Sulfo-SMCC)修饰抗体分子,然后将二者在一小管中混合,通过加入盐酸胲(Hydroxylamine hydrochloride)使二者偶联在一起。

免疫PCR具有高敏感性。因此,抗体和标记DNA的任何非特异性结合均可导致严重的本底问题。因而在加入抗体和标记DNA后必须尽可能彻底地清洗。即使有些特异性结合的抗体或标记DNA被洗掉了,亦可在最后通过增加PCR的循环次数得到弥补。此外,应用有效的封闭剂对防止非特异性结合也是非常重要的。可用脱脂奶粉和牛血清白蛋白做蛋白封闭剂,用鱼精DNA做核酸封闭剂。防止本底信号的另一个重要因素是控制污染,这也是所有敏感的检测系统存在的问题。即使每一步试验都做得非常认真,重复使用同样的引物和标记DNA均会产生假阳性信号。

免疫PCR的一个优点是标记DNA序列完全是人为选定。因此标记DNA及其引物可经常变换,以避免由于污染造成的假阳性信号。

免疫PCR可以检测到常规免疫学方法无法检测的样品。因此,应用免疫PCR可在微观水平(单细胞)检测抗原,定量PCR产物可以估计某一标本中的抗原数量,在临床诊断中可在疾病早期抗原量很低时检测到微量的抗原。

提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序