先导篇 21 世纪的最前沿科学之一,随着人类第一张基因序列草图的完成和发展,生命科学的研究也将进入一个崭新的后基因组学,在基因组-转录组-蛋白组-代谢组的系统生物学框架内(图 1),代谢组是生物动态调控系统中最接近于表型的阶段,是生命的本质特征和物质基础。代谢组学一方面由于与健康疾病、营养科学、药物毒性、环境科学等密切相关,未来广阔;另一方面,由于代谢物结构迥异、种类众多,在技术开发和应用方面也面临巨大挑战。 图 1 | 组织/细胞的系统生物学框架,涵盖了基因组、转录组、蛋白组、代谢组,脂质
PCR 是众所周知的分子生物学技术之一。20 世纪 70 年代,研究人员首次报道了使用合成引物和 DNA 聚合酶从模板复制单链 DNA。然而直到 1983 年,Kary Mullis 才发明出用于扩增目标 DNA 的研究工具,就是我们今天所熟知的 PCR 方法。从此以后,PCR 成为分子生物学研究必不可少的一部分,被广泛应用于基础研究、疾病诊断、农业检测和法医调查等领域。 1.基因表达 通常可通过 PCR 来检测不同细胞类型、组织和生物体在特定时间点的基因表达差异。首先,从目标样品中分离出
GC-MS 非靶向代谢组学检测通过气质联用(GC-MS)方法检测生物体受外界刺激前后体内大多数小分子代谢物的动态变化,重点寻找在实验组和对照组中有显著变化的代谢物,进而研究这些小分子代谢物变化,实现对生命科学中更多问题的探索。 1.GC-MS(气质联用)相关介绍 GC-MS 分离检测的原理:利用待分离的各种物质在两相中的分配系数、吸附能力等理化性质的不同来进行分离,然后进入质谱检测器进行检测的过程。 GC-MS 仪器分为三个系统:进样系统、分离系统、检测系统。 GC-MS 的适用范围:主要
STTT|雷公藤红素抗癌靶标新发现 雷公藤红素,又名南蛇藤素,是从雷神藤中分离出的最具前途的天然药用产物之一,对多种肿瘤类型均有较显著的抑制作用。然而,雷公藤红素具有较严重的副作用,所以它的临床应用受到严格限制,同时,由于其发挥抗肿瘤活性的分子靶标和作用机制不够清晰,缺乏雷公藤红素与靶标的复合物晶体结构,使得基于其化学结构改造开发高效低毒的雷公藤红素衍生物缺乏明确的指导方向。 2023 年 2 月 3 日,中科院上海药物所张豪与上海交通大学徐颖、张翱为共同通讯作者在《Signal