植物和动物组织有很大的不同,主要是其多糖及酚类化合物含量很多,因与有必要注意如下几个方面.
酚类化合物的干扰及对策:
许多植物组织特别是植物的果实(如苹果、樱桃、李子、葡萄等)和树木类植物中富含酚类化合物。酚类物质的含量会随着植物的生长而增加。因而从幼嫩的植物材料中更容易提取RNA。此外,针叶类植物的针叶中多酚的含量比在落叶植物的叶子中要高得多。在植物材料匀浆时,酚类物质会释放出来,氧化后使匀浆液变为褐色,并随氧化程度的增加而加深,这一现象被称为褐化效应(browning effect)。被氧化的酚类化合物(如醌类)能与RNA稳定地结合,从而影响RNA的分离纯化。但Newbury等发现RNA提取的难易程度与材料中酚类物质的总量之间并无相关性,因此认为不是所有的酚类化合物都影响RNA的提取。但一般认为所谓的“缩合鞣质”即聚合多羟基黄酮醇类物质(如原花色素类物质)是影响RNA提取的一类化合物。目前去除酚类化合物的一般途径是在提取的初始阶段防止其被氧化,然后再将其与RNA分开。
防止酚类化合物被氧化的方法:% f9 Y5 N7 h2 w9 H6 ]: E# A/ G5 ]3 ]
1、还原剂法:一般在提取缓冲液中加入(-巯基乙醇、二硫苏糖醇(DTT)或半胱氨酸来防止酚类物质被氧化,有时提取液中(-巯基乙醇的浓度可高达2%。(-巯基乙醇等还可以打断多酚氧化酶的二硫键而使之失活。Su等认为在过夜沉淀RNA时加入(-巯基乙醇(终浓度1%)可以防止在此过程中酚类化合物的氧化。硼氢化钠(NaBH4)是一种可还原醌的还原剂,用它处理后提取缓冲液的褐色可被消减,醌类化合物可被还原成多酚化合物。
2、螯合剂法:螯合剂聚乙烯吡咯烷酮(PVP)和聚乙烯聚吡咯烷酮(PVPP)中的CO-N=基有很强的结合多酚化合物的能力,其结合能力随着多酚化合物中芳环羟基数量的增加而加强。原花色素类物质中含有许多芳环上的羟基,因而可以与PVP或不溶性的PVPP形成稳定的复合物,使原花色素类物质不能成为多酚氧化酶的底物而被氧化,并可以在以后的抽提步骤中被除去。用PVP去除多酚时pH值是一个重要的影响因素,在pH8.0以上时PVP结合多酚的能力会迅速降低[11]。当原花色素类物质量较大时,单独使用PVPP无法去除所有的这类化合物,因而需要与其它方法结合使用。; O6 undefined W8 J; j" [( f
3、Tris-硼酸法:如果提取缓冲液中含有Tris-硼酸(pH7.5),其中的硼酸可以与酚类化合物依氢键形成复合物,从而抑制了酚类物质的氧化及其与RNA的结合。这一方法十分有效,所以Lбpez-Gбmez等在提取缓冲液中不再加入其它还原剂。但如果Tris-硼酸浓度过高(>0.2M)则会影响RNA的回收率。
4、牛血清白蛋白(BSA)法:原花色素类物质与BSA间可产生类似于抗原-抗体间的相互作用,形成可溶性的或不溶性的复合物,减小了原花色素类物质与RNA结合的机会,因此提高了RNA的产量。BSA与PVPP结合使用提取效果会更好。由于BSA中往往含有RNase,因而在使用时要加入肝素以抑制RNase的活性。
5、丙酮法:Schneiderbauer等用-70℃的丙酮抽提冷冻研磨后的植物材料,可以有效地从云杉、松树、山毛榉等富含酚类化合物的植物材料中分离到高质量的RNA。
酚类化合物的去除 :
通过Li+或Ca2+沉淀RNA的方法可以将未被氧化的酚类化合物去除。与PVP、不溶性PVPP或BSA结合的多酚,可以直接通过离心去除掉,或在苯酚、氯仿抽提时除去。Manning利用高浓度的2-丁氧乙醇(50%)来沉淀RNA,而多酚溶解于2-丁氧乙醇中而被除去。然后用含50% 2-丁氧乙醇的缓冲液洗涤RNA沉淀以去除残留的多酚。他认为即使多酚被氧化,其氧化产物仍可以溶解在高浓度2-丁氧乙醇溶液中而被去除,无需再用NaBH4来处理。@
多糖的干扰及对策:
多糖的污染是提取植物RNA时常遇到的另一个棘手的问题。植物组织中往往富含多糖,而多糖的许多理化性质与RNA很相似,因此很难将它们分开。在去除多糖的同时RNA也被裹携走了,造成RNA产量的减少;而在沉淀RNA时,也产生多糖的凝胶状沉淀,这种含有多糖的RNA沉淀难溶于水,或溶解后产生粘稠状的溶液。由于多糖可以抑制许多酶的活性,因此污染了多糖的RNA样品无法用于进一步的分子生物学研究。在常规的方法中,通过SDS-盐酸胍处理可以部分去除一些多糖;在高浓度Na+或K+离子存在条件下,通过苯酚、氯仿抽提可以除去一些多糖;通过LiCl沉淀RNA也可以将部分多糖留在上清液中。但即使通过这些步骤仍会发现有相当多的多糖与RNA混杂在一起,所以还需要用更有效的方法来解决植物RNA分离纯化时多糖污染的问题。 (责任编辑:大汉昆仑王)