丁香实验_LOGO
登录
提问
提问
我要登录
|免费注册
丁香通
点赞
收藏
wx-share
分享

【原创】外源性siRNA的合成和体外导入方法4

丁香园

3093
第四节 病毒载体携带的siRNA
介绍
在大多数真核细胞,RNAi是一个高度保守的机制,它被认为是基因表达和抗病毒机制的调节剂。1-4 RNAi是一个多级的过程,第一步是:在一种核糖核酸酶Ⅲ样的酶(Dicer5 )的作用下,双链RNA(dsRNA)被裂解成小干扰RNA(siRNA)。6这些21到23个核苷酸的siRNA随后参与构成RNA诱导的沉默复合物(RISC),可以将siRNA带到同源mRNA的地方,并将其破坏。
在2001年,Elbashir 等 发现用化学合成的长21个核苷酸的siRNA瞬时转染哺乳动物细胞,可以获得基因特异性抑制。这些siRNA的长度足以诱导产生基因特异性抑制,又不至于引起宿主的干扰反应。另外,siRNA也可以来自于含有茎环发夹结构的 dsRNA。这些短发夹RNA(shRNAS) 可以用含有RNA聚合酶Ⅲ(PolⅢ)启动子的质粒DNA在体外表达。9-14 接着shRNA被Dicer切割成siRNA,然后在胞浆参与构成RISC,降解mRNA。这些研究表明在哺乳动物细胞产生 si/shRNA是可行的。然而,沉默效果是短暂的,转染原代细胞效率相对较低。为了提高原代细胞的转导效率,使siRNA长期稳定表达,人们已经改造病毒载体作为导入siRNA的工具。

导入shRNA的病毒载体
长期的基因抑制对于决定基因的功能是必要的,需要一种有效地方法建立一系列的细胞系,转基因动物,和使靶基因稳定沉默的治疗策略。目前一些组织已经利用病毒载体系统在多种细胞和动物成功地介导了长期的基因特异性抑制, 这样,将RNAi 作为一种治疗手段用于动物模型就更可行了。下面我们将列出为siRNA基因治疗设计的不同病毒载体的优缺点。
表达shRNA的腺病毒载体已经在体内和体外成功地降低了靶蛋白的水平。15,16 这个载体系统提高了将 shRNA导入多种组织细胞的效率。17 不过,由于腺病毒载体在细胞内保持游离,并且随着细胞的分裂而稀释,所以shRNA的表达是短暂的。腺病毒蛋白的低水平表达,以及对腺病毒蛋白的预存免疫也导致了表达shRNA的细胞数目的减少,限制了它在体内的应用。
腺相关病毒(AAV)载体系统很有应用前景,既能转染分裂细胞,又能转染非分裂细胞,而且不会致病,不会激发免疫反应。它可以以游离的形式在转染细胞长期存在,偶尔可以整合到宿主基因组里,使导入的基因长期表达。尽管AAV载体能高效转导肌细胞和脑细胞,但是用来转导造血干细胞却很差,而且存在不少争议,限制了AAV载体的应用。
既然致癌逆转录病毒载体(Oncoretroviral vector)可以整合到宿主细胞,建立稳定的基因转导,人们已经将其由于许多实验室研究和人类基因治疗的临床试验。21 目前有许多机构可以提供表达shRNA的致癌逆转录病毒载体(Oncoretroviral vector)。9,22,24 致癌逆转录病毒载体的主要缺点是不能转导非分裂细胞,这就使它的应用范围大大缩小。25 而且,经常观察到转基因表达的转录失活现象。26 在治疗应用上,致癌逆转录病毒载体有一个很严重的缺点,就是它有可能通过插入突变激活细胞的癌基因,导致恶性肿瘤。
在过去的几年里,慢病毒载体介导的基因转移已经成功地用于多种类型的细胞,包括原代细胞和组织。27 因为慢病毒载体有核定位信号,所以它可以转导分裂细胞。28,29 目前已经从多种逆转录病毒构建了逆转录病毒载体,一些研究者把目光投向了以Ⅰ型为人免疫缺损病毒(HIV-1)为代表的慢病毒。30 由于加入了HIV-1中央聚嘌呤区(cppt)元件,提高了载体整合前核转位的效率。31 土拨鼠肝炎病毒转录后调节元件(WPRE)也会增加转录后转基因的表达。32 为了确保载体的安全性,HIV-1复制所必需的gag/pol 和rev基因由两个不同的质粒DNA表达。33 去除自身灭活载体LTRs中的病毒增强子和启动子,可以使慢病毒载体的安全性进一步提高。33 为了使其可以转导更多的细胞类型,载体中可以加入不同的包膜和细胞表面分子。其中, 疱疹性口炎蛋白G(VSV-G)有最广泛的宿主群。 34 将逆转录病毒载体直接注射到啮齿类动物体内,在多种器官可以有持久的转基因表达,包括脑,肌肉,肾,和视网膜。29,35 在多种动物模型,逆转录病毒载体能够在没有细胞因子的刺激下转导造血干细胞或造血祖细胞,使转入的基因在造血细胞的多重分化谱系中更有效地表达。36-38慢病毒也可以转染巨噬细胞和树突细胞38,39与传统的原核注射/同源重组技术相比,利用慢病毒载体的转基因鼠的生产要有效得多。40,41与致癌逆转录病毒载体不同,慢病毒载体对转基因失活高度抵抗,在转基因鼠可以持续稳定的表达。40因此,慢病毒载体在基因治疗中应该有很广的应用范围。 我们与合作者已经开发了递呈si/shRNA的慢病毒载体,并且成功地使目的基因沉默,包括CCR5化学因子受体基因和HIV-1调节因子基因38,42-51它还可以靶向恶性肿瘤进展过程中的一个关键的基因,p53,这也证明了它作为抗肿瘤药物的巨大潜力。研究表明,以HIV-1为基础构建的这类慢病毒载体具有可感染非分裂细胞、目的基因整合至靶细胞基因组长期表达、免疫反应小等优点,适于体内基因治疗,因此有望成为理想的基因转移载体。

参考文献
1, Kim, V,N., RNA interference in functional genomics and medicine, J. Korean. Med. Sci., 18, 309, 2003.
2. Sharp, P.A., RNA interference--2001, Genes Dev., 15, 485, 2001.
3. Hannon, G.J., RNA interference, Nature, 418, 244, 2002.
4.Hutvagner, G. and Zamore, P.D., RNAi: nature abhors a double-strand, Curt. Opin. Genet. Dev., 12, 225, 2002.
5. Bernstein, E., Caudy, A.A., Hammond, S.M., and Hannon, G.J., Role for bidentate ribonuclease in the initiation step of RNA interference, Nature, 409, 363, 2001,
6. Zamore, P.D., Tuschl, T., Sharp, P.A., and Bartel, D.P., RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals, Cell, 101, 25, 2000.
7. Hammond, S.M., Bernstein, E., Beach, D., and Hannon, G.J., An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells, Nature,404, 293, 2000.
8. Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T., Duplexes of 2 l-nucleotide RNAs mediate RNA interference in cultured mammalian cells, Nature, 411,494, 2001.
9. Brummelkamp, T.R., Bernards, R., and Agami, R., Stable suppression of tumorigenicity by virus-mediated RNA interference, Cancer Cell, 2, 243, 2002.
10. Paddison, p.J., Caudy, A.A., Bemstein, E., Harmon, G.J., and Conklin, D.S., Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells,Genes Dev., 16, 948, 2002.
11. Paul, C.P., Good, P.D., Winer, I., and Engelke, D.R., Effective expression of small interfering RNA in human cells, Nat. Biotechnol., 20, 505, 2002.
12. Sui, G., Soohoo, C., el Affar, B., Gay, F., Shi, Y., and Forrester, W.C., A DNA vector-based RNAi technology to suppress gene expression in mammalian cells, Proc. Natl. Acad. Sci. U. S. A., 99, 5515, 2002.
13. Lee, N.S., Dohjima, T., Bauer, G., Li, H., Li, M.J., Ehsani, A., Salvaterra, p., and Rossi, J., Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells, Nat. Biotechnol., 20, 500, 2002.
14. Miyagishi, M. and Taira, K., U6 promoter-driven siRNAs with t~ur uridine 3' overhangs efficiently suppress targeted gene expression in mammalian cells, Nat. Biotechnol., 20, 497, 2002.
15. Xia, H., Mad, Q., Paulson, H.L., and Davidson, B.L., siRNA-mediated gene silencing in vitro and in vivo, Nat. Biotechnol., 20, 1006, 2002.
16. Shen, C., Buck, A.K., Liu, X., Wink/er, M., and Reske, S.N., Gene silencing by adenovirus-delivered siRNA, FEBS Lett., 539, 1 I I, 2003.
17. Lai, C. M., Lai, Y.K., and Rakoczy, p. E., Adenovirus and adeno-associated virus vectors, DNA Cell Biol, 21,895, 2002.
18. Tomar, R.S., Matta, H., and Chaudhary, P.M., Use of adeno-associated viral vector for delivery of small interfering RNA, Oncogene, 22, 5712, 2003.
19. Boden, D., Pusch, O., Lee, F., Tucker, L., and Ramratnam, B., Human immunodeficiency virus type I escape from RNA interference, j. Virol., 77, 11531, 2003.
20. Srivastava, A., Obstacles to human hematopoietic stem cell transduction by recombinant adeno-associated virus 2 vectors, J. CellBiochem. Suppl., 38, 39, 2002.
21. McTaggart, S. and AI-Rubeai, M., Retroviral vectors for human gene delivery, Biotechnol. Adv., 20, 1, 2002.
22. Barton. G.M. and Medzhitov, R., Retroviral delivery of small interfering RNA into primary cells, Proc. Natl. Acad. Sci. U.S.A., 99, 14943, 2002.
23. Devroe, E. and Silver, P.A., Retrovirus-delivered siRNA, BMC Biotechnol, 2, 15,2002.
24. Paddison, P.J., Caudy, A.A., and Hannon, G.J.. Stable suppression of gene expression by RNAi in mammalian cells, Proc. Natl. Acad. Sci. U.S.A., 99, 1443, 2002.
25. Miller, D.G.. Adam, M.A., and Miller, A.D., Gene transfer by retrovirus vectors occurs only in cells that are actively replicating at the time of infection, Mol. Cell Biol., I 0, 4239, 1990.
26. Jahner, D., Stuhlmann, H., Stewart, C.L., Harbers, K., Lohler, J., Simon, I., and Jaenisch, R, De novo methylation and expression of retroviral genomes during mouse embryogenesis, Nature, 298, 623, 1982.
27. Hacein-Bey-Abina, S., von Kalle, C., Schmidt, M., Le Deist, F., Wulffraat, N., Mclntyre, E., Radford, I., Villeval, J.-L., Fraser, C. C., Cavazzana-Calvo, M., and Fischer, A., A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency, N. Engl. J. Med., 348, 255, 2003.
28. Naldini, L. and Verma, !.M., Lentiviral vectors, Adu Virus Res, 55, 599, 2000.
29. Naldini, L., BIomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F.H., Verma, I.M., and Trono, D., In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector, Science, 272, 263, 1996.
30. Dull, T., Zufferey, R, Kelly, M., Mandel, R.J., Nguyen, M., Trono, D., and Naldini, L., A third-generation lentivirus vector with a conditional packaging system, J.Virol., 72, 8463, 1998.
31. Zennou, V., Petit, C., Guetard, D., Nerhbass, U., Montagnier, L., and Charneau, P., HIV-1 genome nuclear import is mediated by a central DNA flap, Cell, 101,173, 2000.
32. Zufferey, R., Donello, J.E., Trono, D., and Hope, T.J., Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors, J. Virol., 73, 2886, 1999.
33. Miyoshi, H., BIomer, U., Takahashi, M., Gage, F.H., and Verma, I.M., Development of a self-inactivating lentivirus vector, J. Virol., 72, 8150, 1998.
34. Yee, J. K., Friedmann, T., and Bums, J.C., Generation of high-titer pseudotyped retroviral vectors with very broad host range, Methods Cell Biol., 43 Pt. A, 99, 1994.
35. Kafri, T., BIomer, U., Peterson, D.A., Gage, F.H., and Verma, I.M., Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors, Nat. Genet., 17, 314, 1997.
36. Miyoshi, H., Smith, K.A., Mosier, D.E., Verma, l.M., and Torbett, B.E., Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors, Science, 283, 682, 1999.
37. An,D.S., Wersto, R.P., Agricola, B.A., Metzger, M.E., Lu, S., Amado, R.G., Chen,I.S., and Donahue, R.E., Marking and gene expression by a lentivirus vector in transplanted human and nonhuman primate CD34(+) cells, J. Virol., 74, 1286,2000.
38. Rubinson, D.A., Dillon, C.P., Kwiatkowski, A.V., Sievers, C., Yang, L., Kopinja, J., Rooney, D.L., lhrig, M.M., McManus, M.T., Gertler, F.B., Scott, M.L., and Van Parijs, L., A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference, Nat. Genet.,33, 401, 2003.
39. Schroers, R., Sinha, 1., Segall, H., Schmidt-Wolf, I.G., Rooney, C.M.~ Brenner,M.K., Sutton. R.E., and Chen. S.Y., Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-l-based lentiviral vector system, Mol. Ther., I, 171, 2000.
40. Lois, C., Hong, E.J., Pease, S., Brown, E.J., and Baltimore, D., Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors, Science, 295, 868, 2002.
41. Pfeifer. A., Ikawa. M., Dayn. Y., and Verma, I., Transgcnesis by lemiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc. Natl. Acad. Sci. U.S.A., 99, 2140, 2002.
42. Qin, X.-F., An, D.S., Chen. I.S.Y., and Baltimore, D., Inhibiting HIV-I infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5, Proc. Nat. Acod. Sci. U.S.A., 100, 183, 2002.
43. Kawasaki, H. and Taira, K., Short hairpin type of dsRNAs that ale controlled by tRNA(Val) promoter significaptly induce RNAi-mediated gene silencing in the cytoplasm of human cells, Nucleic. Acids. Res., 31,700, 2003.
44. Rubinson, D.A., Dillon, C.P., Kwiatkowski, A.V., Sievers, C., Yang, L., Kopinja, J., Rooney, D.L., lhrig, M.M.. McManus, M.T., Gertler, F.B.. Scott, M.L., and Van Parijs, L., A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference, Nat. Genet., 33, 401, 2003.
45. Stewart. S.A., Dykxhoorn, D.M., Palliser, D., Mizuno, H.. Yu, E.Y., An, D.S., Sabatini, D.M., Chen, I.S., Hahn, W.C., Sharp, P.A., Weinberg, R.A., and Novina, C.D., Lentivirus-delivered stable gene silencing by RNAi in primary cells, RNA, 9, 493, 2003.
46. Li, M.J.. Bauer, G., Michienzi, A., Yee, J.K., Lee, N.S., Kim, J., Li. S., Castanotto, D., Zaia. J., and Rossi, J.J.. Inhibition of HIV-I infection by lentiviral vectors expressing Poi Ill-promoted anti-HiV RNAs. Mol. Thet:, 8, 196, 2003.
47. Banerjea, A., Li, M.J.. Bauer, G., Remling, L., Lee, N.S., Rossi, J., and Akkina, R., Inhibition of HIV-I by lentivir~!l vector-transduced siRNAs in T lymphocytes , differentiated in SCID-hu mice and CD34+ progenitor cell-derived macrophages, Mol. Ther., 8, 62. 2003.
48. Tiscornia. G., Singer. O., lkawa, M., and Vernm, I.M., A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA, Proc. Natl. Acad. Sci. U.S.A.. 100. 1844. 2003.
49. Lee, M.T., Coburn, G.A.. McClure. lVI.O., and Cullen. B.R., Inhibition of human immunodeficiency virus type I replication in primary macrophages by using Tat or CCR5-specific small interfering RNAs expressed from a lentivirus vector, J.Virol., 77, 11964., 2003.
50. Scherr, M., Battmer, K.. Ganscr. A., and Eder, M., Modulation of gene expression by lentiviral-mediated delivery of small interfering RNA, Cell Cycle, 2, 25 I, 2003.
51. Matra, H., Hozayev, B., Tomar. R., Chugh. P., and Chaudhary, P.M.. Use of lentiviral vectors for delivery of small interfering RNA, Cancer Biol. Ther. 2, 206, 2003.
52. Khvorova. A.. Reynolds. A.. and Jayasena. S.D., Functional siRNAs and miRNAs exhibit strand bias. Cell,115209.2003.
53. Elbashir, S.M., Lendeckel, W., and Tuschl, T., RNA interference is mediated by 21- and 22-nucleotide RNAs, Genes Dev., 15, 188, 2001.
54. Kawasaki, H. and Taira, K., Short hairpin type of dsRNAs that are controlled by tRNA(Val) promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells, Nucl. Acids Res., 3 l, 700, 2003.
55. Boden, D., Pusch, O., Lee, F., Tucker, L., Shank, P.R., and Ramratnam, B., Promoter choice affects the potency of HIV-I specific RNA interference, Nucl. Acids Res., 31, 5033, 2003.
56. An, D.S., Xie, Y., Mao, S.H., Morizono, K., Kung, S.K., and Chen, I.S., Efficient lentiviral vectors for short hairpin RNA delivery into human cells, Hum. Gene Ther., 14, 1207, 2003.
57. Li, M.J., Bauer, G., Michienzi, A., Yee, J.K., Lee, N.S., Kim, J., Li, S., Castanotto, D., Zaia, J., and Rossi, J.J., Inhibition of HIV-I infection by lentivirai vectors expressing Poi Ill-promoted anti-HIV RNAs, Mol. Ther., 8, 196. 2003.
58. Banerjea, A., Li, M.J., Bauer, G., Remling, L., Lee, N.S., Rossi, J., and Akkina, R., Inhibition of HIV-I by lentiviral vector-transduced siRNAs in T lymphocytes differentiated in SCID-hu mice and CD34+ progenitor cell-derived macrophages, Mol. Ther., 8, 62, 2003.
59. Tiscornia, G., Singer, O., Ikawa, M., and Verma, I.M., A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA,Proc. Natl. Acad. Sci. U.S.A., 100, 1844, 2003.
60. Wiznerowicz, M. and Trono, D., Conditional suppression of cellular genes: lemivirus vector-mediated drug-inducible RNA interference, J. Virol., 77, 8957, 2003.
61. Abbas-Terki, T., Blanco-Bose, W., Deglon, N., Pralong, W., and Aebischer, P., Lentiviral-mediated RNA interference, Hum. Gene Ther., 13, 2197, 2002.
62. An, D. S., Xie, Y.. Mao, S.H., Morizono, K., Kung, S.K., and Chen,I.S., Efficient lemiviral vectors for short hairpin RNA delivery into human cells, Hum. Gene Ther., 14, 1207, 2003.
63. Charreau, B., Tesson, L., Soulillou, J.P., Pourcel, C., and Anegon, 1., Transgenesis in rats: technical aspects and models, Transgenic Res., 5,223,1996.
64. Baltimore, D., Gene-Therapy-lntracellular Immunization, Nature, 335,395, 1988.
65. Statham, S. and Morgan, R.A., Gene tilerapy clinical trials for HIV, Curr. Opin. Mol. Ther., 1, 430, 1999.
66. Manche, L., Green, S.R., Schmedt, C., and Mathews, M.B., Interactions between double-stranded RNA regulators and the protein kinase DAI, Mol Cell Biol., 12,5238, 1992.
67. Slcdz, C.A., Holko, M., Veer, M.J.D., Silverman, R.H., and Williams, B.R.G.,Activation of the interferon system by short-interfering RNAs, Nat. Cell Biol, 5,834, 2003.
68. Bridge, A.J., Peber,lard, S., Ducraux, A., Nicoulaz, A.L., and Iggo, R., Induction of an inte,'feron response by RNAi vectors in mammalian cells, Nat. Genet., 34.263, 2003.
69. Cavazzana-Calvo, M., Hacein-Bey, S., Basile, G.D.S., Gross, F., Yvon, E.,Nusbaum, P., Selz, F.C.O., Hue, C., Certain, S.E.P., Casanova, J.-L., Bousso, P.,Deist, F.C.O.L., and Fischer, A., Gene therapy of human severe combined immunodeficiency (SC1D)-X 1 disease, Science, 288, 669, 2000.
70. Schroder, A.R., Shinn, P., Chen, H., Berry, C., .Ecker, .1.R., and Bushman, F., HIV-I integration in the human genome favors active genes and local hotspots, Cell,110, 521 2002
71. Wu, X., Li, Y., Crise, B., and Burgess, S.M., Transcription start regions in the human genome are favored targets for MLV integration, Science, 300, 1749, 2003.
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序