免疫荧光组织(细胞)化学技术系列七:现状与展望(附参考文献)
互联网
1、现状与展望
免疫荧光组织化学技术经过半个多世纪的不断改进和创新,已成为现代研究生物和医学的重要手段之一。由于免疫荧光技术与形态、机能相结合不断完善和发展,尤其是合成了多种新荧光素与抗体容易结合,且结合物稳定。可以和FITC结合进行免疫荧光组织化学双标记或三标记。
至今,它已和亲合化学技术如SPA、Biotin以及avidin、ConA相结合,应用领域也日益扩大,又与现代的电子计算机、扫描电镜技术、共聚焦显微镜、荧光激活细胞分类器(FACS)以及数码相机摄影技术的应用,使得快速性、简便性有了更大的提高,使得定量更加准确。90年代又开展了荧光原位末端标记和荧光原位杂交技术,使得应用范围更广。
虽然免疫组织化学技术有了很大的发展,如免疫金银法、免疫胶体金法、SP、Evision二步法和CSA法,但由于它有自己独特的优点:特异性强,定位准确、简便、快速、鲜明,在许多领域中仍占有不可取代的地位。如肾活检、皮肤活检中IgG、IgM、IgA、C3等检测,自身抗体的检测,传染病的快速诊断,单克隆抗体的筛选及鉴定等。随着科学技术地不断发展,免疫荧光组织化学技术已经广泛应用于生命科学的各个领域,放射出更加五彩缤纷的荧光。
2、参考文献
(1)Akivoshi Kawamura, JR. Fluorescent antibody techniques and their application. University of Tokyo Press. 1969.
(2)王伯沄. 免疫荧光组织化学和荧光组织化学技术. 第四军医大学科技资料增刊, 1974; 2: 5-30.
(3)Huang SN. Application of immunofluorescent staining on paraffin section improved by trypsin digestion. Lab Invest, 1976; 35: 383.
(4)Wick G, Traill KN, Schouesten K. Immunofluorescence Technology, Selected Theoretical and Clinical Aspects. Elseries Biomedical press. Amsterdom, 1982: P27~36, P181, P229~262,P317~323.
(5)Akiyoshi Kawamura Jr. Fluorescent antibody Technique and Their Applications. Second Edition University of Tokyo Press, Tokyo, 1977; 79: P141~281.
(6)蔡文琴, 王伯沄主编. 实用免疫细胞化学. 成都:四川科技出版社 1990,P968-977.
(7)李成文. 现代免疫化学技术. 上海: 上海科技出版社 1992;P97-100.
(8)Mahmudi-A3er-s, Lacy-P, Bablit2-B, Mogbel-R. Inhibition of nonspecific binding of fluorescent- labelled antibodies to human eosinophils. J Immunol-Methods. 1998; 227(1-2): 113-119.
(9)Magro-C-M, Cronison-AN. The immunofluorescent profile of dermatomyositis: a comparative study with lupus erythermatosus. J Cutan Pathol. 1997; 24(9): 543-552.
(10)Bausch-SB. A method for triple fluorescence labeling with vicia villosa agglutinin, an anti-parvalubumin antibody and an anti-G-Protein-coupled receptor antibody. Brain Res Brain Prtoc. 1998; 2(4): 286-298.
(11)Gregoni Weber, Jameson-DM. 1916-1917 A fluorescent life time. Biophys J. 1998; 75 (1): 419-422.
(12)Savige JA, Paspalians B, Silvestrini R, et al. A review of immunofluorescent patterns associated with antineutrophil cytoplasmic antibodies (ANCA) and their differentiation from other antibodies. J Clin Pathol. 1998; 51(18): 568-571.
(13)Ballou B, Fisher GW, Deng JS, et al. Cyanine fluorochenome-labeded antibodies in vivo: assessment of tumor imaging using Cy3, Cy5, Cy5.5 and Cy7. Cancer Detect Prev. 1998; 22 (3): 251-257.
(14)Gruber HJ, Hahn CD, Kada G, et al. A anomalous floworescence enhancement of Cy3 and Cy3.5 versus anomalous fluorescemce loss of Cy5 and Cy7 upon covalent linking to IgG and noncovalent binding to avidin. Bioconjug Chem. 2000; 11(5): 696-704.
(15)Southweel BR, Fumess JB. Immunohistochemical demonstration of the NKCD tachykin in receptor on muscle and epithelia in guinea pig intestine. 2001; 120(5): 1140-1151.
(16)Arseniev L, Pickerd N, Goudeva L, et al. Compasative evaluation of commonly used clone and fluorochrome conjugates of monoclonal antibodies for CD34 antigen detection. J Hematother Stem Cell Res. 1999; 8(5): 547-559.
(17)O'Brjen TE, Metheney CD, Polansky JR. Immunoflnorescence method for quantity the trabecular meshwork qlncocorticoid responsee (TIGR) protein in trabecular meshwork and schlemm's canal cells. Curr Eye Res. 1999; 19(6): 517.
(18)Huang MC, Kabo O, Tajika Y, et al. Detection of mammosomatotrophs in paraffin embed allowfullscreen='true'ded specimens of various pituitary adenomas. Chung Hua Hsssueh Tsa Chih (Taipei). 1999; 62(12): 845-851.
(19)王伯沄, 李玉松, 黄高昇, 张远强主编. 病理学技术. 北京: 人民卫生出版社出版; 2000年6月 P380-396.