丁香实验_LOGO
登录
提问
提问
我要登录
|免费注册
丁香通
点赞
收藏
wx-share
分享

时间分辨荧光免疫分析原理(图)

互联网

17364

荧光法是一种非常有用的工具,各种各样的分析领域都在利用它。由于它具有高灵敏度、好的选择性以及可提供多参数信息(如,荧光强度、荧光寿命、荧光各向异性)等特点,所以被广泛用于生物制药研究、临床诊断、宇宙空间环境监测、免疫分析中分子间作用原理研究、DNA序列分析、荧光原位杂交以及细胞成分分析等。镧系系复合物由于其特有的荧光特性,而受到广泛关注,特别是在临床生化分析中。利用镧系元素的荧光特性,构建时间分辨荧光免疫分析(time-resolved fluoroimmunoassay,TRFIA)试剂以及创建新的灵敏度高的荧光免疫分析方法(fluoroimmunoassay)是当今临床生化的主要研究方向。

1、荧光基本原理:

化学体系的光致发光提出较早,光致发光有两种常见的类型荧光和磷光,它们都是化学体系被电磁辐射所激发,然后发射出相同或较长波长的辐射。其中磷光,从分析角度看,意义不是很大。荧光由于其固有的灵敏性而受到人们的偏爱。

荧光标记方法的检出限可达10-15~10-18水平。简单和复杂的气态、液态和固态化学体系均可发荧光。最简单的荧光有稀的原子蒸气发出,经过10-8秒后电子回到基态同时发出两种相同的辐射,这称为共振荧光。有些物质受激后发射出波长较长的特征辐射,这种现象叫Strokes位移。荧光现象只限于相当少数其结构和环境特点使其无辐射弛豫或活化过程的速率减慢到发射反应可在动力学上与其相匹配程度的体系。

荧光发射又称为去活化过程,它受发射速率和振动弛豫影响。荧光发射是激发过程的逆过程,所以受激态寿命和对应于激发过程的吸收峰的摩尔吸收系数之间存在一个倒数关系,实验证明摩尔吸收系数在103~105时,荧光去活化的寿命为10-7~10-9秒。

振动弛豫即在电子激发过程中分子可被激发到任何振动能级,但在溶液中,过量的振动能量会由于受激组分的分子与溶剂分子间的碰撞而马上消失,结果能量转移只是使溶剂的温度有一个微小的改变。影响荧光的因素有量子产率、荧光跃迁类型、荧光物质的结构、溶液的温度和溶剂效应、溶液的PH值以及溶解氧的含量等。量子产率是发射荧光分子的数目与受激态分子总数之比。

荧光跃迁类型指键的跃迁,一般σ—σ跃迁产生荧光很少见,表现为荧光很少由吸收波长小于205nm的紫外辐射引起,而主要限于π—π、π—η跃迁。一般含有芳香官能团的化合物发射荧光强度最大,最简单的杂环化合物如吡啶、呋喃和吡咯等不发射荧光,稠环化合物一般发射荧光。实验发现刚性结构的分子容易发射荧光,同时有机络合剂与金属离子形成络合物使发射荧光增强。大多数荧光效率会随温度增加而增加。溶剂的极性对荧光强度也有影响,一般成正比关系。

PH对荧光有较大的影响,一般因物质而异,所以荧光为基础的分析需要严格控制PH值。溶解氧的存在可使荧光强度降低。常见的荧光素发射荧光由由以下几个过程的综合结果(见图1.1以Eu3+为例)。在外激发阶段,荧光团吸收外激发光所提供的能量,由于分子振动,使荧光团从基态(S0)跃迁到激发态。在这种状态下,大部分荧光团迅速释放能量,通过内转换(非放射衰减)转变为最低的振动水平S1,这个过程产生荧光发射谱。

提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序