简介
实验目的
学习和掌握限制性内切酶的特性
掌握对重组质粒进行限制性内切酶酶切的原理和方法
并理解限制性内切酶是DNA重组技术的关键工具。
相关基础知识
上世纪七十年代,当人们在对噬菌体的宿主特异性的限制-修饰现象进行研究时,首次发现了限制性内切酶。首批被发现的限制性内切酶包括来源于大肠杆菌的EcoR I和EcoR II,以及来源于流感嗜血杆菌(Heamophilus influenzae)的Hind II和Hind III。这些酶可在特定位点切开DNA,产生可体外连接的基因片段。研究者很快发现内切酶是研究基因组成、功能及表达非常有用的工具。
1)寄主控制的限制与修饰现象
限制与修饰系统是细菌细胞的一种防卫手段。各种细菌都能合成一种或几种能够切割DNA双链的核酸内切酶,它们以此来限制外源DNA存在于自身细胞内,但合成这种酶的细胞自身的DNA不受影响,因为这种细胞还合成了一种修饰酶,对自身的DNA进行了修饰,限制性酶对修饰过的DNA不能起作用。这种现象被称为寄主控制的限制与修饰现象。
2)限制性核酸内切酶的类型及特性
按限制酶的亚基组成和切断核酸情况 的不同,分为三类:
Ⅰ型
Ⅱ型~K~Hdiv~M~Kdiv~M~Kbr_~H~M~K~Hdiv~M~Kdiv~MⅢ型
第一类(I型)限制性内切酶能识别专一的核苷酸顺序,它们在识别位点很远的地方任意切割DNA链,其切割的核苷酸顺序没有专一性,是随机的。这类限制性内切酶在DNA重组技术或基因工程中用处不大,无法用于分析DNA结构或克隆基因。这类酶如Eco B、Eco K等。
第三类(III型)限制性内切酶也有专一的识别顺序,在识别顺序旁边几个核苷酸对的固定位置上切割双链。但这几个核苷酸对也不是特异性的。因此,这种限制性内切酶切割后产生的一定长度DNA片段,具有各种单链末端。因此也不能应用于基因克隆。
第二类(II型)限制性内切酶能识别专一的核苷酸顺序,并在该顺序内的固定位置上切割双链。由于这类限制性内切酶的识别和切割的核苷酸都是专一的。因此,这种限制性内切酶是DNA重组技术中最常用的工具酶之一。
这种酶识别的专一核苷酸顺序最常见的是4个或6个核苷酸,少数也有识别5个核苷酸以及7个、8个、9个、10个和11个核苷酸的。这种酶的切割可以有两种方式:
粘性末端 ;是交错切割,结果形成两条单链末端,这种末端的核苷酸顺序是互补的,可形成氢键,所以称为粘性末端。
各有一个单链末端,二条单链是互补的,其断裂的磷酸二酯键以及氢键可通过DNA连接酶的作用而“粘合”。
平头末端:
II型酶切割方式的另一种是在同一位置上切割双链,产生平头末端。例如EcoRV 的识别位置是:
3)同裂酶和同尾酶:
同裂酶差别只在于当识别顺序中有甲基化的核苷酸时,一种限制性内切酶可以切割,另一种则不能。例如Hpa Ⅱ和MspⅠ的识别顺序都是
5’……G| CG G……3’
3’……G GC| G……5’
如果其中有5’-甲基胞嘧啶,则只有Hpa Ⅱ能够切割。
同尾酶:
有时两种酶切割序列不完全相同,但却能产生相同的粘性末端,这类酶被称为同尾酶
同尾酶的切割产物可以通过DNA连接酶将这类末端连接起来,但原来的酶切位点将被破坏。
4)限制性核酸内切酶的命名法
用属名的头一个字母和种名的头两个字母表示寄主菌的物种名称,如E.coli 用Eco表示,所以用斜体字。
用一个字母代表菌株或型,如流感嗜血菌(Heamophilus influenzae)Rd菌株用d,即Hind。
如果一种特殊的寄主菌株,具有几个不同的限制与修饰酶,则以罗马数字表示,如Hind Ⅰ,Hind Ⅱ,Hind Ⅲ等。
材料与仪器
•质粒 pUCm-T-TaSTK
•RNase
用含有10mmol/LTris-HCl、15mmol/L NaCl溶液溶解Rnase到10mg/ml,沸水浴15min,保存到-20℃
•SacI 和 XbaI 核酸内切酶(Takara)
•酶解缓冲液(10×M buffer)
•离心机,水浴锅
•10ml,50ml微量移液器,无菌的1.5ml EP管
步骤
实验方法和步骤
1)质粒中RNA的酶
向30ml质粒溶液中加入10mg/ml Rnase 2ml,37℃水浴酶解0.5小时。
Total ddH2O M Buffer SacI XbaI 质粒DNA
20ml 13ml 2ml 1ml 1ml 3ml
置于37℃水浴酶解16小时。酶解完成后,分别加入10倍的上样缓冲液,然后各取15ml进行电泳分析。
来源:丁香实验