Poly(ADP-ribose) polymerases (PARP) participate in diverse biological processes contributing to cellular homeostasis or exacerbating injury. PARP catalyzes the addition of ADP-ribose molecules (pADPr) to the target proteins, a process termed poly-ADP-ribosylation. Overactivation of PARP, as reflected by increased poly-ADP-ribosylation, accumulation of pADPr-modified proteins or free pADPr, contributes to the depletion of NAD+ and mitochondrial dysfunction, potentially leading to cell death via apoptosis or necrosis. Since PARP over-activation has been identified as a key contributor to the pathobiology of many diseases, monitoring PARP 1 activation by detecting and quantifying pADPr may provide valuable mechanistic insights as well as facilitating therapeutic drug monitoring for PARP inhibitors.
Several non-isotopic immunodetection methods for quantifying pADPr are discussed: western blotting of poly-ADP-ribosylated proteins, cellular localization of pADPr by immunohistochemistry, quantification of pADPr by enzyme-linked immunoassay and small-scale two-dimensional gel electrophoresis.