丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Structural Equation Modeling

互联网

781
Structural equation modeling (SEM) is a multivariate statistical framework that is used to model complex relationships between directly and indirectly observed (latent) variables. SEM is a general framework that involves simultaneously solving systems of linear equations and encompasses other techniques such as regression, factor analysis, path analysis, and latent growth curve modeling. Recently, SEM has gained popularity in the analysis of complex genetic traits because it can be used to better analyze the relationships between correlated variables (traits), to model genes as latent variables as a function of multiple observed genetic variants, and assess the association between multiple genetic variants and multiple correlated phenotypes of interest. Though the general SEM framework only allows for the analysis of independent observations, recent work has extended SEM for the analysis of general pedigrees. Here, we review the theory of SEM for both unrelated and family data, the available software for SEM, and provide an example of SEM analysis.
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序