丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Fluorescence Methods to Study DNA Translocation and Unwinding Kinetics by Nucleic Acid Motors

互联网

593
Translocation of nucleic acid motor proteins (translocases) along linear nucleic acids can be studied by monitoring either the time course of the arrival of the motor protein at one end of the nucleic acid or the kinetics of ATP hydrolysis by the motor protein during translocation using pre-steady state ensemble kinetic methods in a stopped-flow instrument. Similarly, the unwinding of double-stranded DNA or RNA by helicases can be studied in ensemble experiments by monitoring either the kinetics of the conversion of the double-stranded nucleic acid into its complementary single strands by the helicase or the kinetics of ATP hydrolysis by the helicase during unwinding. Such experiments monitor translocation of the enzyme along or unwinding of a series of nucleic acids labeled at one position (usually the end) with a fluorophore or a pair of fluorophores that undergo changes in fluorescence intensity or efficiency of fluorescence resonance energy transfer (FRET). We discuss how the pre-steady state kinetic data collected in these ensemble experiments can be analyzed by simultaneous global nonlinear least squares (NLLS) analysis using simple sequential “n-step ” mechanisms to obtain estimates of the macroscopic rates and processivities of translocation and/or unwinding, the rate-limiting step(s) in these mechanisms, the average “kinetic step-size,” and the stoichiometry of coupling ATP binding and hydrolysis to movement along the nucleic acid.
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序