丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Molecular Modeling of Nucleic Acid Structure

互联网

943
  • Abstract
  • Table of Contents
  • Figures
  • Literature Cited

Abstract

 

This unit is the first in a series of four units covering the analysis of nucleic acid structure by molecular modeling. The unit provides an overview of the computer simulation of nucleic acids. Topics include the static structure model, computational graphics and energy models, the generation of an initial model, and characterization of the overall three?dimensional structure. Curr. Protoc. Nucleic Acid Chem . 54:7.5.1?7.5.13. © 2013 by John Wiley & Sons, Inc.

Keywords: nucleic acid chemistry; nucleic acid structure and folding; structural analysis of biomolecules; experimental determination of structure; folding and conformational change

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Molecular Modeling
  • Summary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   Figure Figure 7.5.1 Schematic representation of molecular modeling analysis.
    View Image
  •   Figure Figure 7.5.2 Canonical structures of DNA built with the Nucleic Acid Builder program available in Amber12 (see Macke and Case, , for a description of the program).
    View Image
  •   Figure Figure 7.5.3 Pictorial definition of helicoidal parameters.
    View Image

Videos

Literature Cited

   Allen, F.H., Bellard, S., Brice, M.D., Cartright, B.A., Doubleday, A., Higgs, H., Hummelink, T., Hummelink‐Peters, B.G., Kennard, O., Motherwell, W.D.S., Rodgers, J.R., and Watson, D.G. 1979. The Cambridge Crystallographic Data Centre: Computer‐based search, retrieval, analysis and display of information. Acta Cryst. B35:2331‐2339.
   Altona, C. and Sundaralingam, M. 1972. Conformational analysis of the sugar ring in nucleosides and nucleotides. New description using the concept of pseudorotation. J. Am. Chem. Soc. 94:8205‐8212.
   Arnott, S. and Hukins, D.W.L. 1972. Optimised parameters for A‐DNA and B‐DNA. Biochem. Biophys. Res. Commun. 47:1504‐1509.
   Arnott, S., Chandrasekaran, R., Birdsall, D.L., Leslie, A.G.W., and Ratliff, R.L. 1980. Left‐handed DNA helices. Nature 283:743‐745.
   Babcock, M.S., Pednault, P.D., and Olson, W.K. 1994. Nucleic acid structure analysis: Mathematics for local Cartesian and helical structure parameters that are truly comparable between structures. J. Mol. Biol. 237:125‐156.
   Berman, H.M., Olson, W.K., Beveridge, D.L., Westbrook, J., Gelbin, A., Demeny, T., Hsieh, S.H., Srinivasan, A.R., and Schneider, B. 1992. The nucleic acid database. A comprehensive relational database of three‐dimensional structures of nucleic acids. Biophys. J. 63:751‐759.
   Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., and Bourne, P.E. 2000. The Protein Data Bank. Nucleic Acids Res. 28:235‐242.
   Bishop, T.C. 2005. Molecular dynamics simulations of a nucleosome and free DNA. J. Biomol. Struct. Dynam. 22:673‐686.
   Calladine, C.R. 1982. Mechanics of sequence‐dependent stacking of bases in B‐DNA. J. Mol. Biol. 161:343‐352.
   Cheatham, T.E., III and Kollman, P.A. 1997. Molecular dynamics simulations highlight the structural differences among DNA:DNA, RNA:RNA, and DNA:RNA hybrid duplexes. J. Am. Chem. Soc. 119:4805‐4825.
   Cheatham, T.E., III, Brooks, B.R., and Kollman, P. A. 2001. Molecular modeling of nucleic acid structure. Curr. Protoc. Nucleic Acid Chem. 6:7.5.1‐7.5.12.
   Clowney, L., Jain, S.C., Srinivasan, A.R., Westbrook, J., Olson, W.K., and Berman, H.M. 1996. Geometric parameters in nucleic acids: Nitrogenous bases. J. Am. Chem. Soc. 118:509‐518.
   Cruz‐Neira, C., Sandin, D.J., DeFranti, T.A., Kenyon, R.V., and Hart, J.C. 1992. The CAVE: Audio visual experience automatic virtual environment. Communications of the ACM 35:64‐72.
   Das, R., Karanicolas, J., and Baker, D. 2010. Atomic accuracy in predicting and designing noncanonical RNA structure. Nat. Methods 7:291‐294.
   Dickerson, R.E. 1989. Definitions and nomenclature of nucleic acid structure components. Nucleic Acids Res. 17:1797‐1803.
   El Hassan, M.A. and Calladine, C.R. 1995. The assessment of the geometry of dinucleotide steps in double‐helical DNA: A new local calculation scheme. J. Mol. Biol. 251:648‐664.
   Erie, D.A., Breslauer, K.J., and Olson, W.K. 1993. A Monte Carlo method for generating structures of short single‐stranded DNA sequences. Biopolymers 33:75‐105.
   Gelbin, A., Schneider, B., Clowney, L., Hsieh, S.‐H., Olson, W.K., and Berman, H.M. 1996. Geometric parameters in nucleic acids: Sugar and phosphate constituents. J. Am. Chem. Soc. 118:519‐529.
   Hershkovitz, E., Sapiro, G., Tannenbaum, A., and Williams, L.D. 2006. Statistical analysis of RNA backbone. IEEE/ACM Trans. Comput. Biol. Bioinform. 3:33‐46.
   Laing, C. and Schlick, T. 2011. Computational approaches to RNA structure prediction, analysis, and design. Curr. Opin. Struct. Biol. 21:306‐318.
   Lavery, R., Moakher, M., Maddocks, J.H., Petkeviciute, D., and Zakrzewska, K. 2009. Conformational analysis of nucleic acids revisited: Curves+. Nucleic Acids Res. 37:5917‐5929.
   Lu, X.‐J. and Olson, W.K. 1999. Resolving the discrepancies among nucleic acid conformational analyses. J. Mol. Biol. 285:1563‐1575.
   Lu, X.‐J. and Olson, W.K. 2003. 3DNA: A software package for the analysis, rebuilding and visualization of three‐dimensional nucleic acid structures. Nucleic Acids Res. 31:5108‐5121.
   Macke, T.J. and Case, D.A. 1997. Modeling unusual nucleic acid structures. In Molecular Modeling of Nucleic Acids, Vol. 682: ACS Symposium Series (N.B. Leontis and J. SantaLucia Jr., eds.) pp. 379‐393. American Chemical Society, Washington, D.C.
   Major, F., Turcotte, M., Gautheret, D., Lapalme, G., Fillion, E., and Cedergren, R. 1991. The combination of symbolic and numerical computation for three‐dimensional modeling of RNA. Science 253:1255‐1260.
   Neidle, S. 2008. The building‐blocks of DNA and RNA. In Principles of Nucleic Acid Structure, pp. 20‐37. Elsevier, London.
   Nielsen, P.E., Egholm, M., Berg, R.H., and Buchardt, O. 1991. Sequence‐selective recognition of DNA by strand displacement with a thymine‐substituted polyamide. Science 254:1497‐1500.
   O'Boyle, N.M., Banck, M., James, C.A., Morley, C., Vandermeersch, T., and Hutchison, G.R. 2011. Open Babel: An open chemical toolbox. J. Cheminform. 3:33.
   Olson, W.K. 1996. Simulating DNA at low resolution. Curr. Opin. Struct. Biol. 6:242‐256.
   Pittsburgh Supercomputing Center. 2008. PSC's “WiiMD” Wins Best Demonstration at TG ’08. (http://www.psc.edu/).
   Sanbonmatsu, K.Y., Blanchard, S.C., and Whitford, S.P. 2013. Molecular dynamics simulations of the ribosome. In Biophysical Approaches to Translational Control of Gene Expression, Vol. 1: Biophysics for the Life Sciences (J.D. Dinman, ed.) pp. 51‐68. Springer, New York.
   Schlick, T. 1995. Modeling superhelical DNA: Recent analytical and dynamic approaches. Curr. Opin. Struct. Biol. 5:245‐262.
   Schneider, B. and Kabelác, M. 1998. Stereochemistry of binding of metal cations and water to a phosphate group. J. Am. Chem. Soc. 120:161‐165.
   Schneider, B., Cohen, D.M., Schleifer, L., Srinivasan, A. R., Olson, W.K., and Berman, H.M. 1993. A systematic method for studying the spatial distribution of water molecules around nucleic acid bases. Biophys. J. 65:2291‐2303.
   Schneider, B., Neidle, S., and Berman, H.M. 1997. Conformations of the sugar‐phosphate backbone in helical DNA crystal structures. Biopolymers 42:113‐124.
   Schneider, B., Morávek, Z., and Berman, H.M. 2004. RNA conformational classes. Nucleic Acids Res. 32:1666‐1677.
   Seetin, M.G. and Mathews, D.H. 2012. RNA structure prediction: An overview of methods. Methods Mol. Biol. 905:99‐122.
   Sim, A.Y., Minary, P., and Levitt, M. 2012. Modeling nucleic acids. Curr. Opin. Struct. Biol. 22:273‐278.
   Sponer, J. and Lankas, F. (eds.) 2006. Computational Studies of RNA and DNA, 1st ed., Vol. 2: Challenges and Advances in Computational Chemistry and Physics. Springer, The Netherlands.
   Stofer, E. and Lavery, R. 1994. Measuring the geometry of DNA grooves. Biopolymers 34:337‐346.
   Surles, M.C., Richardson, J.S., Richardson, D.C., and Brooks, F.P. Jr. 1994. Sculpting proteins interactively: Continual energy minimization embedded in a graphical modeling system. Protein Sci. 3:198‐210.
   Vologodskii, A.V. and Cozzarelli, N.R. 1994. Conformational and thermodynamic properties of supercoiled DNA. Ann. Rev. Biophys. Biomol. Struct. 23:609‐643.
Internet Resources
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library
 
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序