丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Molecular Modeling of Nucleic Acid Structure: Energy and Sampling

互联网

1839
  • Abstract
  • Table of Contents
  • Figures
  • Literature Cited

Abstract

 

An overview of computer simulation techniques as applied to nucleic acid systems is presented. This unit discusses methods used to treat energy and to sample representative configurations. Emphasis is placed on molecular mechanics and empirical force fields. Curr. Protoc. Nucleic Acid Chem . 54:7.8.1?7.8.21. © 2013 by John Wiley & Sons, Inc.

Keywords: nucleic acid chemistry; nucleic acid structure and folding; structural analysis of biomolecules; experimental determination of structure; molecular modeling; molecular dynamics; force fields

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • The Energy Representation
  • Beyond Energy Evaluation
  • Summary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   Figure Figure 7.8.1 Schematic of the interactions in a pairwise additive molecular mechanics force field.
    View Image
  •   Figure Figure 7.8.2 Schematic representations of the sampling of various methods. These plots represent the energy of the system along an arbitrary reaction coordinate. The wells represent energy minima in the phase space. The state of the system is depicted by the location of the ball. (A ) Minimization. The system moves to the bottom of the nearest well and barriers are not overcome. (B ) Monte Carlo. Each configuration of the system is represented by a number and barrier crossing relates to the move set and total number of moves. (C ) Molecular dynamics. The state of the system evolves due to force according to Newton's equations of motion. In short simulations, large barriers will not be surmounted.
    View Image

Videos

Literature Cited

   Abolfath, R.M., Biswas, P.K., Rajnarayanam, R., Brabec, T., Kodym, R., and Papiez, L. 2012. Multiscale QM/MM molecular dynamics study on the first steps of guanine damage by free hydroxyl radicals in solution. J. Phys. Chem. A 15:3940‐3945.
   Allen, M.P. and Tildesley, D.J. 1987. Computer Simulation of Liquids. Oxford University Press, Oxford.
   Allinger, N.L. 1977. Conformational analysis 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. J. Am. Chem. Soc. 99:8127‐8134.
   Allinger, N.L., Yuh, Y.H., and Lii, J.H. 1989. Molecular mechanics. The MM3 force field for hydrocarbons.1. J. Am. Chem. Soc. 111:8551‐8566.
   Allinger, N.L., Chen, K., and Lii, J.H. 1996. An improved force field (MM4) for saturated hydrocarbons. J. Comp. Chem. 17:642‐668.
   Aqvist, J. and Marelius, J. 2001. The linear interaction energy method for predicting ligand binding free energies. Comb. Chem. High T. Scr. 14:613‐626.
   Babin, V., Baucom, J., Darden, T.A., Sagui, C. 2006. Molecular dynamics simulations of DNA with polarizable force fields: Convergence of an ideal B‐DNA structure to the crystallographic structure. J. Phys. Chem. B. 110:11571‐11581.
   Baker, C.M., Anisimov, V.M., and MacKerell, A.D. Jr. 2011. Development of CHARMM polarizable force field for nucleic acid bases based on the classical Drude oscillator model. J. Phys. Chem. B. 115:580‐596.
   Banas, P., Jurecka, P., Walter, N.G., Sponer, J., and Otyepka, M. 2009. Theoretical studies of RNA catalysis: Hybrid QM/MM methods and their comparison with MD and QM. Methods 49:202‐216.
   Beveridge, D.L., Cheatham, T.E. III, and Mezei, M. 2012. The ABCs of molecular dynamics simulation on B‐DNA, circa 2012. J. Biosci. 37:379‐397.
   Biancardi, A., Biver, T., Secco, F., and Mennucci, B. 2013. An investigation of the photophysical properties of minor groove bound and intercalated DAPI through quantum‐mechanical and spectroscopic tools. Phys. Chem. Chem. Phys. 15:4596‐4603.
   Biesiadecki, J.J. and Skeel, R.D. 1993. Dangers of multiple time step methods. J. Comp. Phys. 109:318‐328.
   Braxenthaler, M., Unger, R., Auerbach, J., Given, A., and Moult, J. 1997. Chaos in protein dynamics. Proteins 29:417‐425.
   Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D., Swaminathan, J.S., and Karplus, M. 1983. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J. Comp. Chem. 4:187‐217.
   Brooks, B.R., Brooks, C.L., Brooks, A.D. III, Mackerell, L., Nilsson, R.J., Petrella, B., Roux, Y., Won, G., Archontis, C., Bartels, S., Boresch, A., Caflisch, L., Caves, Q., Cui, A.R., Dinner, M., Feig, S., Fischer, J., Gao, M., Hodoscek, W., Im, K., Kuczera, T., Lazaridis, J., Ma, V., Ovchinnikov, E., Paci, R.W., Pastor, C.B., Post, J.Z., Pu, M., Schaefer, B., Tidor, R.M., Venable, H.L., Woodcock, X., Wu, W., Yang, D.M., and York, M. 2009. CHARMM: The Biomolecular Simulations Program. J. Comp. Chem. 30:1545‐1615.
   Brooks, C.L. III, Karplus, M., and Pettitt, B.M. 1988. Proteins. A Theoretical Perspective of Dynamics, Structure, and Thermodynamics. John Wiley & Sons, New York.
   Cances, E., Mennucci, B., and Tomasi, J. 1997. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 107:3032‐3041.
   Case, D.A., Cheatham, T.E. III, Darden, T., Gohlke, H., Luo, R., Merz, K.M. Jr., Onufriev, A., Simmerling, C., Wang, B., and Woods, R. 2005. The Amber biomolecular simulation programs. J. Comput. Chem. 26:1668‐1688.
   Cerutti, D.S., Duke, R., Freddolino, P.L., Fan, H., and Lybrand, T.P. 2008. A vulnerability in popular molecular dynamics packages concerning Langevin and Andersen dynamics. J. Chem. Theory Comput. 4:1669‐1680.
   Chatfield, D.C., Eurenius, K.P., and Brooks, B.R. 1998. HIV‐1 protease cleavage mechanism: A theoretical investigation based on classical MD simulation and reaction path calculations using a hybrid QM/MM potential. Theochem. J. Mol. Struct. 423:79‐92.
   Chang, C.E. and Gilson, M.K. 2004. Free energy, entropy, and induced fit in host‐guest recognition: Calculations with the second‐generation mining minima algorithm. J. Am. Chem. Soc. 40:13156‐13164.
   Chang, C.E., Chen, W., and Gilson, M.K. 2005. Evaluating the accuracy of the quasiharmonic approximation. J. Chem. Theory Comput. 1:1017‐1028.
   Cheatham, T.E. III and Kollman, P.A. 1997. Molecular dynamics simulations highlight the structural differences in DNA:DNA, RNA:RNA and DNA:RNA hybrid duplexes. J. Am. Chem. Soc. 119:4805‐4825.
   Chiu, S.W., Clark, M., Subramaniam, S., and Jakobsson, E. 2000. Collective motion artifacts arising in long‐duration molecular dynamics simulations. J. Comp. Chem. 21:121‐131.
   Cieplak, P., Dupradeau, F.‐Y., Duan, Y., and Wang, J. 2009. Polarization effects in molecular mechanics force fields. J. Phys. Condens. Matter. 21:333102‐333123.
   Cummins, P.L. and Gready, J.E. 1997. Coupled semiempirical molecular orbital and molecular mechanics model (QM/MM) for organic molecules in aqueous solution. J. Comp. Chem. 18:1496‐1512.
   Curuksu, J. and Zacharias, M. 2009. Enhanced conformational sampling of nucleic acids by a new Hamiltonian replica exchange molecular dynamics approach. J. Chem. Phys. 130:104110.
   Deem, M.W. and Bader, J.S. 1996. A configurational bias Monte‐Carlo method for linear and cyclic peptides. Mol. Phys. 87:1245‐1260.
   de Pablo, J.J. 2011. Coarse‐grained simulations of macromolecules: From DNA to nanocomposites. Ann. Rev. Phys. Chem. 62:555‐574.
   Dixon, S.L. and Merz, K.M.J. 1997. Fast, accurate semiempirical molecular orbital calculations for macromolecules. J. Chem. Phys. 107:879‐893.
   Dodd, L.R., Boone, T.D., and Theodorou, D.N. 1993. A concerted rotation algorithm for atomistic Monte‐Carlo simulation of polymer melts and glasses. Mol. Phys. 78:961‐996.
   Erie, D.A., Breslauer, K.J., and Olson, W.K. 1993. A Monte Carlo method for generating structures of short single‐stranded DNA sequences. Biopolymers 33:75‐105.
   Field, M., Bash, P., and Karplus, M. 1990. A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulation. J. Comp. Chem. 11:700‐733.
   Flatters, D., Zakrzewska, K., and Lavery, R. 1997. Internal coordinate modeling of DNA: Force field comparisons. J. Comp. Chem. 18:1043‐1055.
   Fletcher, R. and Reeves, C.M. 1964. Function minimization by conjugate gradients. Computer J. 7:149‐153.
   Flores, S.C., Sherman, M.A., Bruns, C.M., Eastman, P., and Altman, R.B. 2011. Fast flexible modeling of RNA structure using internal coordinates. IEEE/ACM Trans. Comput. Biol. Bioinfom. 8:1247‐1257.
   Garcia, A.E. and Paschek, D. 2008. Simulation of the pressure and temperature folding/unfolding equilibrium of a small RNA hairpin. J. Am. Chem. Soc. 130:815‐817.
   Gao, J.L. 1996. Hybrid quantum and molecular mechanical simulations—An alternative avenue to solvent effects in organic chemistry. Acc. Chem. Res. 29:298‐305.
   Gorin, A.A., Ulyanov, N.B., and Zhurkin, V.B. 1990. S‐N transition of the sugar ring in B‐form DNA. Molekulyarnaya Biologiya 24:1300‐1313.
   Grimme, S. 2011. Density functional theory with London dispersion corrections. Wiley Interdisciplinary Reviews: Computational Molecular Science. 1:211‐228.
   Halgren, T.A. 1996. Merck molecular force field 1. Basis, form, scope, parameterization, and performance of MMFF94. J. Comp. Chem. 17:490‐519.
   Hansson, T., Marelius, J., and Aqvist, J. 1998. Ligand binding affinity prediction by linear interaction energy methods. J. Comput. Aid. Mol. Des. 12:27‐35.
   Harvey, S.C., Tan, R.K.Z., and Cheatham, T.E. III. 1998. The flying ice cube: Velocity rescaling in molecular dynamics simulations leads to violation of equipartition. J. Comp. Chem. 19:726‐740.
   Harvey, S.C., Wang, C., Teletchea, S., and Lavery, R. 2003. Motifs in nucleic acids: Molecular mechanics restraints for base pairing and base stacking. J. Comp. Chem. 24:1‐9.
   Henriksen, N.M., Roe, D.R., and Cheatham, T.E. III. 2013. Reliable oligonucleotide conformational ensemble generation in explicit solvent for force field assessment using reservoir replica exchange molecular dynamics simulations. J. Phys. Chem. B 117:4014‐4027.
   Hess, B., Kutzner, C., van der Spoel, D., and Lindahl, E. 2008. GROMACS 4: Algorithms for highly efficient, load‐balanced, and scalable molecular simulation. J. Chem. Theory Comput. 3:435‐447.
   Hobza, P. and Sponer, J. 1999. Structure, energetics, and dynamics of the nucleic acid base pairs: Nonempirical ab initio calculations. Chem. Rev. 11:3247‐3276.
   Hobza, P., Kabelac, M., Sponer, J., Mejzlik, P., and Vondrasek, J. 1998. Performance of empirical potentials (AMBER, CFF95, CVFF, CHARMM, OPLS, POLTEV), semiempirical quantum chemical methods (AM1, MNDO/M, PM3), and ab initio Hartree‐Fock method for interaction of DNA bases: Comparison with nonempirical beyond Hartree‐Fock results. J. Comp. Chem. 18:1136‐1150.
   Hnizdo, V., Darian, E., Fedorowicz, A., Demchuk, E., Li, S., and Singh, H. 2007. Nearest‐neighbor nonparametric method for estimating the configurational entropy of complex molecules. J. Comp. Chem. 28:655‐668.
   Hnizdo, V., Tan, J., Killian, B.J., and Gilson, M.K. 2008. Efficient calculation of configurational entropy from molecular simulations by combining the mutual‐information expansion and nearest‐neighbor methods. J. Comp. Chem. 29:1605‐1614.
   Jorgensen, W. 1995. BOSS, Version 3.6. Yale University, New Haven, Connecticut.
   Jorgensen, W.L. and Tirado‐Rives, J. 1996. Monte Carlo vs molecular dynamics for conformational sampling. J. Phys. Chem. 100:14508‐14513.
   Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W., and Klein, M.L. 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79:926‐935.
   Jorgensen, W.L., Maxwell, D.S., and Tirado‐Rives, J. 1996. Development and testing of the OPLS all‐atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118:11225‐11236.
   Karplus, M. and Kushick, J.N. 1981. Method for estimating the configurational entropy of macromolecules. Macromolecules 14:325‐332.
   Klamt, A. and Schuurmann, G. 1993. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J. Chem. Soc. Perkin Trans. 2 5:799‐805.
   Kollman, P.A., Massova, I., Reyes, C., Kuhn, B., Huo, S., Chong, L., Lee, M., Lee, T., Duan, Y., Wang, W., Donni, D., Cieplak, P., Srinivasan, J., Case, D.A., and Cheatham, T.E. III. 2000. Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 33:889‐897.
   Korth, M. 2010. Third‐generation hydrogen‐bonding corrections for semiempirical QM methods and force fields. J. Chem. Theory Comput. 6:3808‐3816.
   Korth, M., Pitonak, M., Rezac, J., and Hobza, P. 2010. A transferable H‐bonding correction for semiempirical quantum‐chemical methods. J. Chem. Theory Comput. 6:344‐352.
   Kuhrova, J., Banas, P., Best, R.E., Sponer, J., and Otyepka, P. 2013. Computer folding of RNA tetraloops? Are we there yet? J. Chem. Theory. Comp. 9:2115‐2125.
   Lahiri, A. and Nilsson, L. 1997. Properties of dianionic oxyphosphorane intermediates from hybrid QM/MM simulations: Implications for ribozyme reactions. J. Mol. Struct. 419:51‐55.
   Lavery, R., Zakrzewska, K., and Sklenar, H. 1995. JUMNA (junction minimisation of nucleic acids). Comp. Phys. Comm. 91:135‐158.
   Leach, A.R. 1997. Molecular Modeling: Principles and Applications. Addison‐Wesley, Reading, Massachusetts.
   Lee, T.S., Silva Lopez, C., Giambasu, G.M., Martick, M., Scott, W.G., and York, D.M. 2008. Role of Mg2+ in hammerhead ribozyme catalysis from molecular simulation. J. Amer. Chem. Soc. 130:3053‐3064.
   Levine, I.N. 2008. Quantum Chemistry, 6th ed. Prentice Hall, Englewood Cliffs, New Jersey.
   Lior‐Hoffmann, L., Wang, L., Wang, S., Geacintov, N.E., Broyde, S., and Zhang, Y. 2012 Preferred WMSA catalytic mechanism of the nucleotidyl transfer reaction in himan DNA polymerase K elucidates error‐free bypass of a bulky DNA lesion. Nucleic Acids Res. 18:9193‐9205.
   Maple, J.R., Hwang, M.J., Stockfisch, T.P., Dinur, U., Waldman, M., Ewig, C.S., and Hagler, A.T. 1994. Derivation of class II force fields. 1. Methodology and quantum force field for the alkyl functional group and alkane molecules. J. Comp. Chem. 15:162‐182.
   Liu, D.C. and Nocedal, J. 1989. On the limited memory method for large scale optimization. Mathematics Programming B 45:503‐528.
   Maisuradze, C.G., Senet, P., Czaplewski, C., Liwo, A., and Scheraga, H.A. 2010. Investigation of protein folding by coarse‐grained molecular dynamics with the UNRES force field. J. Phys. Chem. A 114:4471‐4485.
   McCammon, J.A. and Harvey, S.C. 1987. Dynamics of Proteins and Nucleic Acids. Cambridge University Press, Cambridge, Massachusetts.
   McQuarrie, D.A. and Simon, J.D. 1997 Physical Chemistry: A Molecular Approach. University Science Books, Sausalito, California.
   Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., and Teller, E. 1953. Equation of state calculations by fast computing machines. J. Chem. Phys. 21:1087‐1092.
   Mlynsky, V., Banas, P., Walter, N.G., Sponer, J., and Otyepka, M. 2011. QM/MM studies of hairpin ribozyme self‐cleavage suggest the feasibility of multiple competing reaction mechanisms. J. Phys. Chem. B 115:13911‐13924.
   Nam, K., Gao, J., and York, D.M. 2008. Quantum mechanical/molecular mechanical simulation study of the mechanism of hairpin ribozyme catalysis. J. Am. Chem. Soc. 130:4680‐4691.
   Nesterova, E.N., Federov, O.U., Poltev, V.I., and Chuprina, V.P. 1997. The study of possible A and B conformations of alternating DNA using a new program for conformational analysis of duplexes (CONAN). J. Biomol. Struct. Dyn. 14:459‐474.
   Noguti, T. and Go, N. 1985. Efficient Monte Carlo method for simulation of fluctuating conformations of native proteins. Biopolymers 24:527‐546.
   Northrup, S.H. and McCammon, J.A. 1980. Simulation methods for protein structure fluctuations. Biopolymers 19:1001‐1016.
   Pastor, R.W. 1994. Techniques and applications of Langevin dynamics simulations. In The Molecular Dynamics of Liquid Crystals (G. Luckhurst and C. Veracini, eds.) pp. 85‐138. Kluwer Academic Publishers, Amsterdam, The Netherlands.
   Perez, A., Luque, F.J., and Orozco, M. 2007. Dynamics of B‐DNA on the microsecond time scale. JACS 47:14739‐14745.
   Ponder, J.W., Wu, C., Ren, P., Pande, V.S., Chodera, J.D., Schnieders, M.J., Haque, I., Mobley, D.L., Lanbrecht, D.S., DiStasio, R.A. Jr., Head‐Gordon, M., Clark, G.N., Johnson, M.E., and Head‐Gordon, T. 2010. Current status of the AMOEBA polarizable force field. J. Phys. Chem. B 114:2549‐2564.
   Repasky, M.P., Chandrasekhar, J., and Jorgensen, W.L. 2002. PDDG/PM3 and PDDG/MNDO: Improved semiempirical methods. J. Comp. Chem. 23:1601‐1622.
   Reznac, J., Fanfrilik, J., Salahub, D., and Hobza, P. 2009. Semiempirical quantum chemical PM6 method augmented by dispersion and H‐bonding correction terms reliably describes various types of noncovalent complexes. J. Chem. Theory Comput. 5:1749‐1760.
   Rick, S.W., Stuart, S.J., and Berne, B.J. 1994. Dynamical fluctuating charge force fields–application to liquid water. J. Chem. Phys. 101:6141‐6156.
   Riley, K.E., Pitonak, M., Jurecka, P., and Hobza, P. 2010. Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem. Rev. 110:5023‐5063.
   Risthaus, T. and Grimme S. 2013. Benchmarking of London dispersion‐accounting density functional theory methods on very large molecular complexes. J. Chem. Theory Comput. 9:1580‐1591.
   Rocha, G.B., Freire, R.O., Simas, A.M., and Stewart, J.J.P. 2006. RM1: A reparameterization of AM1 for H, C, N, O, P, S, F, Cl, Br, and I. J. Comp. Chem. 27:1101‐1111.
   Rokob, T.A., Srnec, M., and Rulisek, L. 2012. Theoretical calculations of physico‐chemical and spectroscopic properties of bioinorganic systems: Current limits and perspectives. Dalton Trans. 41:5754‐5768.
   Ryckaert, J.P., Ciccotti, G., and Berendsen, H.J.C. 1977. Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n‐alkanes. J. Comp. Phys. 23:327‐341.
   Sauerwine, B. and Widom, M. 2011. Kinetic Monte Carlo method applied to nucleic acid hairpin folding. Phys. Rev. E 84:061912.
   Saunders, M., Houk, K.N., Wu, Y.‐D., Still, W.C., Lipton, M., Chong, G., and Guida, W.C. 1990. Conformations of cycloheptadecane. A comparison of methods for conformational searching. J. Am. Chem. Soc. 112:1419‐1427.
   Schlick, T. 2009. Molecular dynamics–based approaches for enhanced sampling of long‐time, large‐scale conformational changes in biomolecules. Biol. Rep. 1:51‐60.
   Schlick, T. and Overton, M. 1987. A powerful truncated Newton method for potential energy minimization. J. Comp. Chem. 8:1025‐1039.
   Senn, H.M. and Thiel, W. 2009 QM/MM methods for biomolecular systems. Agnew. Chem. Int. Ed. 48:1198‐1229.
   Simmerling, C., Miller, J.L., and Kollman, P.A. 1998. Combined locally enhanced sampling and particle mesh Ewald as a strategy to locate the experimental structure of a non‐helical nucleic acid. J. Am. Chem. Soc. 120:7149‐7155.
   Sindhikara, D.J., Kim, S., Voter, A.F., and Roitberg, A.E. 2009. Bad seeds sprout perilous dynamics: Stochastic thermostat induced trajectory synchronization in biomolecules. J. Chem. Theory Comput. 5:1624‐1631.
   Sgrignani, J. and Magistrato, A. 2012. The structural role of Mg2+ ions in a class I RNA polymerase ribozyme: A molecular simulation study. J. Phys. Chem. B 116:2259‐2268.
   Sklenovsky, P., Florova, P., Banas, P., Reblova, K., Lankas, F., Otyepka, M., and Sponer, J. 2011. Understanding RNA flexibility using explicit solvent simulations: The ribosomal and group I intron reverse kink‐turn motifs. J. Chem. Theory Comput. 7:2963‐2980.
   Sponer, J., Riley, K.E., and Hobza, P. 2008. Nature and magnitude of aromatic stacking of nucleic acid bases. Phys. Chem. Chem. Phys. 12:2595‐2610.
   Sponer, J., Sponer, J.E., Petrov, A.I., and Leontis, N.B. 2010. Quantum chemical studies of nucleic acids: Can we construct a bridge to the RNA structural biology and bioinformatics communities? J. Phys. Chem. B 114:15723‐15741.
   Sponer, J., Mladek, A., Sponer, J.E., Svozil, D., Zgarbova, M., Banas, P., Jurecka, P., and Otyepka, M. 2012. The DNA and RNA sugar‐phosphate backbone emerges as the key player. An overview of quantum‐chemical structural biology and simulation studies. Phys. Chem. Chem. Phys. 14:15257‐15277.
   Stanton, R.V., Little, L.R., and Merz, K.M. 1995. An examination of a Hartree‐Fock molecular mechanical coupled potential. J. Phys. Chem. 99:17344‐17348.
   Steinbach, P.J. and Brooks, B.R. 1994. Protein simulation below the glass‐transition temperature. Dependence on cooling protocol. Chem. Phys. Lett. 226:447‐452.
   Stewart, J.J.P. 1990. Semiempirical molecular orbital methods. In Reviews in Computational Chemistry (K.B. Lipkowitz and D.B. Boyd, eds.) pp. 45‐81. VCH, New York.
   Straub, J.E. 1996. Optimization techniques with applications to proteins. In New Developments in Theoretical Studies of Proteins (R. Elber, ed.) pp. 137‐196. World Scientific, Singapore.
   Sugita, Y. and Okamoto, Y. 1999. Replica‐exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314:141‐151.
   Swendsen, R.H. and Wang, J.S. 1986. Replica Monte Carlo simulation of spin glasses. Phys. Rev. Lett. 57:2607‐2609.
   Szabo, A. and Ostlund, N.S. 1989. Modern Quantum Chemistry. McGraw‐Hill, New York.
   Takada, S. 2012. Coarse‐grained molecular simulations of large biomolecules. Cur. Opin. Struct. Biol. 22:130‐137.
   Tan, Y.H., Tan, C., Wang, J., and Luo, R. 2008. Continuum polarizable force field within the Poisson‐Boltzmann framework. J. Phys. Chem. B 112:7675‐7688.
   Thiel, W. 1997. Computational methods for large molecules. J. Mol. Struct. 398:1‐6.
   Tomasi, J., Mennucci, B., and Cammi, R. 2005. Quantum mechanical continuum solvation models. Chem. Rev. 105:2999‐3094.
   Tuckerman, M., Berne, B.J., and Martyna, G.J. 1992. Reversible multiple time scale molecular dynamics. J. Chem. Phys. 97:1990‐2001.
   Uberuaga, B.P., Anghel, M., and Vand oter, A.F. 2004. Synchronization of trajectories in canonical molecular‐dynamics simulations: Observation, explanation and exploitation. J. Chem. Phys. 120:6363‐6374.
   Valleau, J.P. and Whittington, S.G. 1977. A guide to Monte Carlo for statistical mechanics: 1. Highways. In Statistical Mechanics A. A Modern Theoretical Chemistry (B.J. Berne, ed.) pp. 137‐168. Plenum Press, New York.
   van Gunsteren, W.F. and Berendsen, H.J.C. 1990. Computer simulation of molecular dynamics: Methodology, applications, and perspectives in chemistry. Angew. Chem. Int. Ed. Engl. 29:992‐1023.
   van Gunsteren, W.F. and Mark, A.E. 1998. Validation of molecular dynamics simulation. J. Chem. Phys. 108:6109‐6116.
   Vorobjev, Y.N. and Hermans, J. 1999. ES/IS: Estimation of conformational free energy by combining dynamics simulations with explicit solvent with and implicit solvent continuum model. Biophys. Chem. 78:195‐205.
   Wang, J., Cieplak, P., Li, J., Wang, J., Cai, Q., Hsieh, M., Lei, H., Luo, R., and Duan, Y. 2011. Development of polarizable models for molecular mechanical calculations II: Induced dipole models significantly improve accuracy of intermolecular interaction energies. J. Phys. Chem. B 115:3100‐3011.
   Wiberg, K.B. 1965. A scheme for strain energy minimization. Application to the cycloalkanes. J. Am. Chem. Soc. 87:1070‐1078.
   Winger, M., Trzesniak, D., Baron, R., and van Gunsteren, W.F. 2009. On using a too large integration time step in molecular dynamics simulations of coarse‐grained molecular models. Phys. Chem. Chem. Phys. 11:1934‐1941.
   Yang, Y., Yu, H., York, D.M, and Cui, Q. 2008. Description of phosphate hydrolysis reactions with the Self‐Consistent‐Charge Density‐Functional‐Tight‐Binding (SCC‐DFTB) theory. 1. Parameterization. J. Chem. Theory Comp. 4:2067‐2084.
   Young, M.A., Jayaram, B., and Beveridge, D.L. 1997. Intrusion of counterions into the spine of hydration in the minor groove of B‐DNA: Fractional occupancy of electronegative pockets. J. Am. Chem. Soc. 119:59‐69.
   Zerner, M.C. 1991. Semiempirical molecular orbital methods. In Reviews in Computational Chemistry (K.B. Lipkowitz and D.B. Boyd, eds.) pp. 313‐365. VCH, New York.
   Zhou, Y. and Truhlar, D.G. 2008. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06‐class functionals and 12 other functionals. Theor. Chem. Acc. 120:215‐241.
   Zhurkin, V.B., Ulyanov, N.B., Gorin, A.A., and Jernigan, R.L. 1991. Static and statistical bending of DNA evaluated by Monte Carlo calculations. Proc. Natl. Acad. Sci. U.S.A. 88:7046‐7050.
   Zuo, G., Li, W., Zhang, J., Wang, J., and Wang, W. 2010. Folding of a small RNA hairpin based on simulation with replica exchange molecular dynamics. J. Phys. Chem. B 114:5835‐5839.
Internet Resources
   http://www.ccl.net
   Lists of available software.
   http://www.netsci.org/Resources/Software/Modeling
   GAMESS Web site.
   http://en.wikipedia.org/wiki/List_of_quantum_chemistry_and_solid‐state_physics_software
   GAMESS‐UK Web site.
   http://www.msg.ameslab.gov/GAMESS/GAMESS.html
   Gaussian program Web site.
   http://www.cfs.dl.ac.uk/
   Jaguar Web site.
   http://www.gaussian.com
   MolPro Web site.
   http://www.schrodinger.com
   NWChem.
   http://www.molpro.net
   Q‐chem Web site.
   http://www.nwchem‐sw.org/index.php/Main_Page
   Spartan Web site.
   http://www.q‐chem.com
   Terachem/Petachem.
   http://www.wavefun.com
   Turbomole.
   http://www.petachem.com/products.html
   ZINDO Web site.
   http://www.turbomole.com/
   http://www.msi.com
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library
 
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序