丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

PTDDRBD siRNA Delivery

互联网

1513
A major hurdle in drug delivery today is for the drug to reach inside the cell to exert its biological effect. Many drug candidates are hydrophilic and are therefore not able to cross the hydrophobic plasma membrane, which serves to protect the cell from foreign molecules and pathogens. One promising drug candidate is the hydrophilic and negatively charged short-interfering RNA (siRNA), known to degrade target mRNA 1,000-fold more efficiently than small molecule drugs. The delivery capacity of small cationic peptides called protein transduction domains or cell-penetrating peptides, suggested them to be suitable delivery vehicles for siRNA. However, it has proven troublesome to utilize the PTD–siRNA conjugates for mRNA degradation due to the characteristics of siRNA, often resulting in precipitation and aggregation. This chapter describes a recently reported delivery strategy, PTD–DRBD fusion protein siRNA delivery, where a double-stranded RNA-binding domain expressed as a fusion protein together with three TAT PTDs binds the siRNA, thus masking the negatively charged backbone and preventing aggregation. This new protocol results in noncytotoxic mRNA degradation even more effective than lipofection.
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序