Implicit Membrane Models for Membrane Protein Simulation
互联网
375
Implicit models of membrane environments offer computational advantages in simulations of membrane-interacting proteins and peptides. Such methods are especially useful for studies of long time scale processes, such as folding and aggregation, or very large complexes that are otherwise intractable with explicit lipid environments. Implicit models replace explicit solute—solvent interactions with a mean-field approach. In the most physical models, continuum dielectric electrostatics is combined with empirical formulations for the nonpolar components of the free energy of solvation. The practical use of a number of implicit membrane models ranging from the empirical IMM1 method to generalized Born-based methods with two-dielectric and multidielectric representations of biological membrane characteristics is presented.