PET, SPECT, CT, and MRI in Mouse Cardiac Phenotyping: An Overview
互联网
- Abstract
- Table of Contents
- Figures
- Literature Cited
Abstract
This overview first summarizes the last decade of continuous developments and improvements in pre?clinical imaging methods that are now essential tools for in vivo evaluation of cardiac morphology and function in living mice, involving nuclear emission of labeled molecules (micro?PET and micro?SPECT) and electromagnetic wave interactions with biological tissues (micro?CT and micro?MRI). In the following, and for better understanding, the basic physical principles and specific technical innovations of the aforementioned imaging methods are reviewed. Specificity, sensitivity, and spatial and temporal resolutions, together with the corresponding advantages and weaknesses of each method are then discussed, and cardiac image?acquisition protocols and illustrative examples are given for each modality. Emerging hybrid cardiac imaging is also presented and illustrated. Then, recent biological insights provided by mouse cardiac imaging are presented. Finally, imaging strategies in mouse cardiac phenotyping involving the aforementioned methods, adding metabolic and molecular information to morphological data, are emphasized and discussed. Curr. Protoc. Mouse Biol. 2:129?144 © 2012 by John Wiley & Sons, Inc.
Keywords: pre?clinical imaging; phenotyping; mouse models; cardiology; PET; SPECT; CT; MRI
Table of Contents
- 1: Introduction: A Short Historical Perspective on In Vivo Microimaging of Mouse Cardiac Morphology and Function Using PET, SPECT, CT, and MRI
- 2: Pre‐Clinical Imaging Background Physics and Examples of Mouse Cardiac Imaging Protocols and Results
- 3: Cardiac Hybrid Imaging in the Mouse
- 4: New Biological Insights Provided by Mouse Cardiac Imaging
- Conclusion
- Literature Cited
- Figures
Materials
Figures
-
Figure 1. Example of gated‐imaging PET protocol. (A ) Time‐activity curves (mean ± SEM) illustrating the lower glucose uptake of the myocardium of a high‐fat‐diet mouse group compared to the standard chow control group (SEM has been determined according to the mouse population). (B ) Micro‐PET imaging device (yap‐PET, ISE srl, Migliarino Pisano, Pisa Italy) showing the opposite detectors and an anesthetized mouse inside the imaging cell. (C ) Set of contiguous micro‐PET ungated axial slices of the mouse thorax showing, clearly and at one time point, the [18 F]FDG uptake by the mouse myocardium (arrow). View Image -
Figure 2. Example of gated‐imaging SPECT protocol. (A ) 16 time bins of a mid‐ventricular short axis slice, extracted from the micro‐SPECT 3D set of healthy mouse cardiac perfusion images using the eXplore speCZT Vision 120 imaging device, showing end diastole (images 1 and 16) and end systole (image 8) of left and right ventricular wall perfusion. (B ) left ventricular volume curve and corresponding ejection fraction (EF) value based on the formula EF = (EDV‐ESV)/EDV. View Image -
Figure 3. General view of (A ), the dedicated small animal MRI at 1.5 T (OPTImouse 1.5; http://www.rs2d.com), and (B ) the micro‐SPECT/CT (eXplore speCZT Vision 120) in our lab. The two imaging devices are in close proximity, without any interference between them, allowing easily sequential multimodality acquisition procedures like SPECT/MRI by simply translating the air‐warmed and nonmagnetic imaging cell with the anesthetized mouse from one system to the other. View Image -
Figure 4. Example of gated imaging CT protocol. (A ) End diastole and (B ) end systole left and right mid ventricular micro‐CT (eXplore speCZT Vision 120) images of myocardium in healthy mouse in three orthogonal planes extracted from the isotropic 3D set of acquired images, showing several anatomic details. (C ) Left ventricular volume curve and corresponding ejection fraction (EF) value based on the formula (EF = [EDV‐ESV]/EDV). View Image -
Figure 5. Example of MRI imaging protocol. Ungated T1‐weighted contiguous axial slices (1 mm thickness, in plane pixel size of 250 × 250 µm2 ) through the thorax of a healthy mouse acquired with a small‐animal dedicated MRI device (OPTImouse 1.5; http://www.rs2d.com) showing the ventricular anatomy clearly. View Image -
Figure 6. Example of hybrid SPECT/MRI cardiac imaging. Micro‐SPECT/MRI image fusion showing healthy mouse whole‐body contiguous coronal slices. [99m Tc]sestamibi SPECT tissue perfusion (heart) and tracer metabolic elimination routes (liver, gall bladder and digestive tract, kidneys) are represented in color superimposed on the MRI T1‐weighted mouse anatomy in gray. Left ventricle wall perfusion and gall bladder are easily visible. Both sets of isotropic 3D images were acquired sequentially with the micro‐SPECT (eXplore speCZT Vision 120) and the 1.5 T micro‐MRI (OPTImouse 1.5; http://www.rs2d.com). Total acquisition time of both sets of images including the transfer of the animal in the imaging cell was 40 min. View Image
Videos
Literature Cited
Literature Cited | |
Arslan, F., Smeets, M., Riem Vis, P., Karper, J., Quax, P., Bongartz, L., Peters, J., Hoefer, I., Doevendans, P., Pasterkamp, G., and de Kleijn, D. 2011. Lack of Fibronectin‐EDA promotes survival and prevents adverse remodeling and heart function deterioration after myocardial infarction. Circ. Res. 108:585‐592. | |
Badea, C., Hedlund, L., and Johnson, G. 2004. Micro‐CT with respiratory and cardiac gating Med. Phys. 31:3324‐3329. | |
Badea, C., Fubara, B., Hedlund, L., and Johnson, G. 2005. 4‐D micro CT of the mouse heart. Mol. Imaging 4:110‐116. | |
Badea, C., Bucholz, E., Hedlund, L., Rockman, H., and Johnson, G. 2006. Imaging methods for morphological and functional phenotyping of the rodent heart Toxicol. Pathol. 34:111‐117. | |
Beekman, F., and Van der Have, F. 2007. The pinhole: Gateway to ultra‐high resolution three dimensional radionuclide imaging. Eur. J. Nucl. Med. Mol. Imaging 34:151‐161. | |
Beyers, R.J., Scott Smith, R., Xu, Y., Piras, B., Salerno, M., Berr, S., Meyer, C., Kramer, C., French, B., and Epstein, F. 2012. T2‐weighted MRI of post‐infarct myocardial edema in mice. Magn. Reson. Med. 67:201‐209. | |
Brockmann, M., Kemmling, A., and Groden, C. 2007. Current issues and perspectives in small rodents resonance imaging using clinical MRI scanners. Methods 43:79‐87. | |
Bucholz, E., Ghaghada, K., Qi, Y., Mukundan, S., and Johnson, G. 2008. Four dimensional MR microscopy of the mouse heart using radial acquisition and liposomal gadolinium contrast agent. Magn. Reson. Med. 60:111‐118. | |
Büscher, K., Judenhofer, M., Kuhlmann, M., Hermann, S., Wehrl, H., Schäfers, K., Schäfers, M., Pichler, B., and Stegger, L. 2010. Isochronous assessment of cardiac metabolism and function in mice using hybrid PET/MRI. J Nucl. Med. 51:1277‐1284. | |
Cao, G., Lee, Y., Peng, R., Liu, Z., Rajaram, R., Calderon‐Colon, X., An, L., Wang, P., Phan, T., Sultana, S., Lalush, D., Lu, J., and Zhou, O. 2009. A dynamic micro‐CT scanner based on carbon nanotube field emission x‐ray source Phys. Med. Biol. 54:2323‐2340. | |
Chang, G., Cao, F., Krishnan, M., Huang, M., Li, Z., Xie, X., Sheick, A., Hoyt, G., Robbins, R., Hsiai, T., Schneider, M., and Wu, J. 2007. Positron emission tomography imaging of conditional gene activation in the heart. J. Mol. Cell Cardiol. 43:18‐26. | |
Chin, B., Metzler, S., Lemaire, A., Curcio, A., Vemulapalli, S., Greer, K., Petry, N., Turkington, T., Colemen, R., Rockman, H., and Jaszczak, R. 2007. Left ventricular functional assessment in mice: Feasibility of high spatial and temporal resolution ECG‐gated blood pool SPECT. Radiology 245:440‐448. | |
Constantinesco, A., Choquet, P., Monassier, L., Israel‐Jost, V., and Mertz, L. 2005. Assessment of left ventricular perfusion, volumes, and motion in mice using pinhole gated SPECT. J. Nucl. Med. 46:1005‐1011. | |
De Kemp, R., Epstein, F., Catana, C., Tsui, B., and Ritman, E. 2010. Small animal molecular imaging methods. J. Nucl. Med. 51:18S‐32S. | |
Feintuch, A., Zhu, Y., Bishop, J., Davidson, L., Dazai, J., Bruneau, B., and Henkelman, R. 2007. 4D cardiac MRI in the mouse. NMR Biomed. 20:360‐365. | |
Flögel, U., Su, S., Kreidewei, I., Ding, Z., Galbarz, L., Fu, J., Jacoby, C., Witzke, O., and Schrader, J. 2011. Noninvasive detection of graft rejection by in vivo 19F MRI in the early stage. Am. J. Transplant. 11:235‐244. | |
Franco, F., Dubois, S., Peshock, R., and Shohet, R. 1998. Magnetic resonance imaging accurately estimates LV mass in a transgenic mouse model of cardiac hypertrophy. Am. J. Physiol. Heart Circ. Physiol. 274:H679‐H683. | |
Goetz, C., Breton, E., Choquet, P., Israel‐Jost, V., and Constantinesco, A. 2008a. SPECT low‐field MRI system for small animal imaging. J. Nucl. Med. 49:88‐93. | |
Goetz, C., Monassier, L., Choquet, P., and Constantinesco, A. 2008b. Assessment of right and left ventricular function in healthy mice by blood pool pinhole gated SPECT. C R Biol. 331:637‐647. | |
Golestani, R., Wu, C., Tio, R., Zeebregts, C., Petrov, A., Beekman, F., Dierckx, R., and Boersma, H. 2010. Small animal SPECT and SPECT/CT: Application in cardiovascular research. Eur. J. Nucl. Med. Mol. Imaging 37:1766‐1777. | |
Hallouard, F., Anton, N., Choquet, P., Constantinesco, A., Vandamme, T. 2010. Iodinated blood pool contrast media for preclinical X‐ray imaging applications: A review. Biomaterials 31:6249‐6268. | |
Hamamura, M., Ha, S., Roeck, W., Muftuler, L., Wagennar, D., Meir, D., Patt, B., and Nalcioglu, O. 2010. Development of an MR compatible SPECT system (MRSPECT) for simultaneous date acquisition. Phys. Med. Biol. 55:1563‐1575. | |
Hartley, C., Lacy, J., Dai, D., Nayak, N., Taffet, G., Entman, M., and Michael, L. 1999. Functional cardiac imaging in mice using Ta‐178. Nat. Med. 5:237‐239. | |
Heijman, E., Strijkers, G., Habets, J., Janssen, B., and Nicolay, K. 2004. Magnetic resonance imaging of regional cardiac function in the mouse. MAGMA 17:170‐178. | |
Inubushi, M., Jordan, M., Roos, K., Ross, R., Chatziioannou, A., Stout, D., Dahlbom, M., and Schelbert, H. 2004. Nitrogen‐13 ammonia cardiac positron emission tomography in mice: Effects of clonidine‐induced changes in cardiac work on myocardial perfusion. Eur. J. Nucl. Med. Mol. Imaging 31:110‐116. | |
Kreissl, M., Wu, H., Stout, D., Ladno, W., Schindler, T., Zhang, X., Prior, J., Prins, M., Chatziioannou, A., Huang, S., and Schelbert, H. 2006. Noninvasive measurement of cardiovascular function in mice with high temporal resolution small animal PET. J. Nucl. Med. 47:974‐980. | |
Lahoutte, T. 2007. Monitoring left ventricular function in small animals. J. Nucl. Cardiol. 14:371‐379. | |
Law, M., Schäfers, K., Kopka, K., Wagner, S., Schober, O., and Schäfers, M. 2010. Molecular imaging of cardiac sympathetic innervation by 11C‐mHED and PET : From man to mouse? J. Nucl. Med. 51:1269‐1276. | |
Maï, W., Badea, C., Wheeler, C., Hedlund, L., and Johnson, G. 2005. Effects of breathing and cardiac motion on spatial resolution in the microscopic imaging of rodents Magn. Reson. Med. 53:858‐865. | |
Maslov, M., Chacko, V., Hirsch, G., Akki, A., Leppo, M., Steenbergen, C., and Weiss, R. 2010. Reduced in vivo high‐energy phosphates precedes adriamycin‐induced cardiac dysfunction. AJP‐Heart Circ. Physiol. 299:H332‐H337. | |
Meikle, S., Kench, P., Kassiou, M., and Banati, R. 2005. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys. Med. Biol. 50:R45‐R61. | |
Nahrendorf, M., Badea, C., Hedlund, L., Figueiredo, J., Sosnovik, D., Johnson, G., and Weissleder, R. 2007. High‐resolution imaging of murine myocardial infarction with delayed‐enhancement cine micro‐CT Am. J. Physiol. Heart Circ. Physiol. 292:H3172‐H3178. | |
Nahrendorf, M., Keliher, E., Panizzi, P., Zhang, H., Hembrador, S., Figueiredo, J.L., Aikawa, E., Kelly, K., Libby, P., and Weissleder, R. 2009. 18F‐4V for PET‐CT imaging of VCAM‐1 expression in atherosclerosis. Cardiovasc. Imaging 2:1213‐1222. | |
Olafsen, T., Young, S., Davies, B., Beigneux, A., Kenanova, V., Voss, C., Young, G., Wong, K.P., Barnes, R. II, Tu, Y., Weinstein, M., Nobumori, C., Huang, S.C., Goldberg, I., Bensadoun, A., Wu, A., and Fong, L 2010. Unexpected expression pattern for Glycosylphosphatidylinositol‐anchored HDL‐binding protein 1 (GPIHBP1) in mouse tissues revealed by positron emission tomography scanning. J. Biol. Chem. 285:39239‐39248. | |
Oostendorp, M., Douma, K., Wagenaar, A., Slenter, J., Tilman, M., Hackeng, T., van Zandvoort, M., Post, M., and Backes, W. 2010. Molecular magnetic resonance imaging of myocardial angiogenesis after acute myocardial infarction. Circulation 121:775‐783. | |
Panizzi, P., Nahrendorf, M., Figueiredo, J.L., Panizzi, J., Marinelli, B., Iwamoto, Y., Keliher, E., Maddur, A., Waterman, P., Kroh, H., Leuschner, F., Aikawa, E., Swirski, F., Pittet, M., Hackeng, T., Fuentes‐Prior, P., Schneewind, O., Block, P., and Weissleder, R. 2011. In vivo detection of Staphylococcus aureus endocarditis by targeting pathogen‐specific prothrombin activation. Nat. Med. 17:1142‐1147. | |
Pichler, B., Judenhofer, M., Catana, C., Walton, J., Kneilling, M., Nutt, R., Siegel, S., Claussen, C., and Cherry, S. 2006. Performance test of an LSO‐APD detector in a 7T MRI scanner for simultaneous PET/MRI. J. Nucl. Med. 47:639‐647. | |
Schaart, D., Van Dam, H., Seifert, S., Vinke, R., Dendooven, P., Löhner, H., and Beekman, F. 2009. A novel SiPM array based monolithic scintillator detector for PET. Phys. Med. Biol. 54:3501‐3512. | |
Schlomka, J., Roessl, E., Dorscheid, R., Dill, S., Martens, G., Istel, T., Baumer, C., Herrmann, C., Steadman, R., Zeitler, G., Livne, A., and Proksa, R. 2008. Experimental feasibility of multi‐energy photon‐counting K‐edge imaging in pre‐clinical computed tomography. Phys. Med. Biol. 53:4031‐4047. | |
Song, W., Dyer, E., Stuckey, D., Copeland, O'N., Leung, M.C., Bayliss, C., Messer, A., Wilkinson, R., Tremoleda, J.L., Schneider, M., Harding, S., Redwood, C., Clarke, K., Nowak, K., Monserrat, L., Wells, D., and Marston, S. 2011. Molecular mechanism of the E99K mutation in cardiac actin (ACTC Gene) that causes apical hypertrophy in man and mouse. J. Biol. Chem. 286:27582‐27593. | |
Sosnovik, D. and Weissleder, R. 2007. Emerging concepts in molecular MRI. Curr. Opin. Biotechnol. 18:4‐10. | |
Sosnovik, D., Dai, G., Nahrendorf, M., Rosen, B., and Seethamraju, R. 2007. Cardiac MRI in mice at 9.4 Tesla with a transmit‐receive surface coil and a cardiac tailored intensity correction algorithm. J. Magn. Reson. Imaging 26:279‐287. | |
Sosnovik, D., Garanger, E., Aikawa, E., Nahrendorf, M., Figuiredo, J.L., Dai, G., Reynolds, F., Rosenzweig, A., Weissleder, R., and Josephson, L. 2009. Molecular MRI of cardiomyocyte apoptosis with simultaneous delayed‐enhancement MRI distinguishes apoptotic and necrotic myocytes In Vivo. Circ. Cardiovasc. Imaging 2:460‐467. | |
Stegger, L., Schäffers, K., Flögel, U., Livieratos, L., Hermann, S., Jacoby, C., Keul, P., Conwa, E., Schober, O., Schrader, J., Levkau, B., and Schäfers, M. 2005. Monitoring left ventricular dilation in mice with PET. J. Nucl. Med. 46:1516‐1521. | |
Stegger, L., Heijman, E., Schäfers, K., Nicolay, K., Schäfers, M., and Strijkers, G. 2009. Quantification of left ventricular volumes and ejection fraction in mice using PET, compared with MRI. J. Nucl. Med. 50:132‐138. | |
Tsui, B. and Kraitchman, D. 2009. Recent advances in small‐animal cardiovascular imaging. J. Nucl. Med. 50:667‐670. | |
Vallée, J., Ivancevic, M., Nguyen, D., Morel, D., and Jaconi, M. 2004. Current status of cardiac MRI in small animal. MAGMA 17:149‐156. | |
Wehrl, H., Judenhofer, M., Wiehr, S., and Pichler, B. 2009. Pre‐clinical PET/MR: Technological advances and new perspectives in biomedical research. Eur. J. Nucl. Med. Mol. Imaging 36:55‐68. | |
Weiss, R. 2001. Imaging the murine cardiovascular system with magnetic resonance. Circ. Res. 88:550‐551. | |
Wiesmann, F., Ruff, J., Dienesh, C., Leupold, A., Rommel, E., Haase, A., and Neubauer, S. 2000. Cardiovascular phenotype characterization in mice by high resolution magnetic resonance imaging. MAGMA 11:10‐15. | |
Wu, M., Tang, R., Gao, D., Ido, A., O'Connell, J., and Hasegawa, B. 2000. ECG‐gated pinhole SPECT in mice with millimeter spatial resolution. IEEE Trans. Nucl. Sci. 47:1218‐1221. | |
Wu, J.C., Inubushi, M., Sundaresan, G., Schelbert, H.R., and Gambhir, S.S. 2002. Positron emission tomography imaging of cardiac reporter gene expression in living rats. Circulation 106:180‐183. | |
Wu, J.C., Inubushi, M., Sundaresan, G., Schelbert, H.R., and Gamdhir, S.S. 2004. Positron emission tomography imaging of cardiac reporter gene in living rats. Circulation 106:180‐183. | |
Zhong, J. and Yu, X. 2010. Strain and torsion quantification in mouse hearts under dobutamine stimulation using 2D multiphase MR DENSE. Magn. Reson. Med. 64:1315‐1322. | |
Zhou, R., Pickup, S., Glickson, J., Scott, C., and Ferrari, V. 2003. Assessment of global and regional myocardial function in the mouse using cine and tagged MRI. Magn. Reson. Med. 49:760‐764. |