丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

DNA甲基化结构基因、DNA甲基转移酶以及DNA去甲基化等知识概述

互联网

8801
相关专题
 

什么是DNA甲基化,本文叙述了DNA甲基化结构基因,DNA 甲基转移酶,DNA 去甲基化,甲基化新位点。DNA甲基化是甲基转移酶催化作用下,DNA的CG两个核苷酸 的胞嘧啶被选择性地添加甲基,形成5-甲基胞嘧啶。DNA甲基化修饰可导致基因结构和功能的异常。

结构基因

DNA甲基化状态的改变可导致基因结构和功能异常。结构基因含有很多CPG 结构, 2CPG 和2GPC 中两个胞嘧啶的5 位碳原子通常被甲基化, 且两个甲基集团在DNA 双链大沟中呈特定三维结构。基因组 中60%~ 90% 的CPG 都被甲基化, 未甲基化的CPG 成簇地组成CPG 岛, 位于结构基因启动子的核心序列和转录起始点。有实验证明超甲基化阻遏转录的进行。DNA 甲基化可引起基因组中相应区域染色质结构变化, 使DNA 失去核酶ö限制性内切酶的切割位点, 以及DNA 酶的敏感位点, 使染色质高度螺旋化, 凝缩成团, 失去转录活性。5 位C 甲基化的胞嘧啶脱氨基生成胸腺嘧啶, 由此可能导致基因置换突变, 发生碱基错配: T2G, 如果在细胞分裂过程中不被纠正,就会诱发遗传病或癌症, 而且, 生物体甲基化的方式是稳定的, 可遗传的。

DNA 甲基转移酶有两种:

1) DNM T1, 持续性DNA 甲基转移酶—— 作用于仅有一条链甲基化的DNA 双链, 使其完全甲基化, 可参与DNA 复制双链中的新合成链的甲基化,DNM T1 可能直接与HDAC (组蛋白去乙酰基转移酶) 联合作用阻断转录 ; 2)DNM T3a、DNM T3b从头甲基转移酶, 它们可甲基化CPG, 使其半甲基化, 继而全甲基化。从头甲基转移酶可能参与细胞生长分化调控, 其中DNM T3b在肿瘤基因甲基化中起重要作用。

DNA 去甲基化有两种方式:

1) 被动途径: 由于核因子N F 粘附甲基化的DNA , 使粘附点附近的DNA不能被完全甲基化, 从而阻断DNM T1 的作用; 2) 主动途径: 是由去甲基酶的作用, 将甲基集团移去的过程。在DNA 甲基化阻遏基因表达的过程中, 甲基化CPG 粘附蛋白起着重要作用。虽然甲基化DNA 可直接作用于甲基化敏感转录因子E2F、CREB、A P2、CM ycöM yn、N F2KB、Cmyb、Ets, 使它们失去结合DNA 的功能从而阻断转录, 但是, 甲基化CPG 粘附分子可作用于甲基化非敏感转录因子(SP1、CTF、YY1) , 使它们失活, 从而阻断转录。人们已发现5 种带有恒定的甲基化DNA 结合域(MBD ) 的甲基化CPG 粘附蛋白。其中M ECP2、MBD1、MBD2、MBD3 参与甲基化有关的转录阻遏;MBD1 有糖基转移酶活性, 可将T 从错配碱基对TöG 中移去,MBD4 基因的突变还与线粒体不稳定的肿瘤发生有关。在MBD2 缺陷的小鼠细胞中, 不含M ECP1 复合物, 不能有效阻止甲基化基因的表达。这表明甲基化CPG 粘附蛋白在DNA 甲基化方式的选择, 以及DNA 甲基化与组蛋白去乙酰化、染色质重组 相互联系中的有重要作用。

甲基化新位点的寻找方式:

随着甲基化研究水平的提高,近年来,提出了以限制性标记基因组扫描(RLGS)为代表的一系列新兴的全基因组甲基化扫描分析的新技术,另如:甲基化敏感的限制性指纹谱技术(methylation-sensitive restriction fingerprinting technique, MSRF)、甲基化间区位点扩增(amplification of inter-methylated sites, AIMS)等,这些新技术的出现为甲基化胚胎发育、肿瘤细胞异常基因印记向更深层次的发展提供了有效方法学工具。简单说来,[46][47][48] 1.RLGS是将稀有切点限制酶(NotⅠ)和二维凝胶电泳相结合,与NotⅠ-Eco RV文库进行对比分析,检测、扫描全基因组甲基化的情况。它的缺点是只能分析基因组中50%左右的CpG岛;2.MSRF用到限制性内切酶,如:MseⅠ、BstUⅠ,并采用10碱基随机引物扩增差异甲基化片段,几乎可以检测全基因组所有CpG岛,但此方法复杂、需要后续鉴定、技术难度高;3.AIMS技术采用甲基化敏感和甲基化不敏感同裂酶(isoschizomer)裂解以及接头(adaptor)引物扩增甲基化间区序列,此方法可通过接头引物控制扩增带的复杂程度,且所得片段在200-2000bp之间,可以直接克隆到载体 并测序。优点是简单方便,可以作为全基因组差异印记基因筛选的有效工具。

1)限制性标记基因组扫描(restriction landmark genomic scanning,RLGS)

Costello等2000年报道的RLGS[46,49]能对整个基因组的甲基化状态进行分析,发现新甲基化基因的方法。这种方法联合使用了限制性内切酶及二维电泳。其过程是:先用甲基化敏感的稀频限制性内切酶NotⅠ消化基因组DNA,甲基化位点保留,标记末端、切割、行一维电泳,随后再用更高频的甲基化不敏感的内切酶切割,行二维电泳,这样甲基化的部分被切割开并在电泳时显带,得到RLGS图谱与正常对照得出缺失条带即为甲基化的可能部位[5]。

这种方法可同时分析不同肿瘤中甲基化模式的异同和寻找肿瘤内DNA甲基化的新靶点,由于新发现的甲基化新靶点的作用尚不清楚,因此其需要后续进一步分析确定,此外,RLGS图谱不能完全确认所缺失的片段是由于甲基化所致还是由于DNA本身缺失所致[5]且结果分析复杂,不易解释。

2 )MBD(Methyl-CpG binding domain column chromatography,甲基化结合区)柱层析法

根据MBD蛋白家族和MeCP2的特性,Masahiko Shiraishi等2004年提出了一种新的方法MBD柱层析法,用于筛选和发现基因组中甲基化的情况。并且比较了MBD和重亚硫酸盐基因组测序法,得出:用MBD柱层析法分析得出的甲基化片段均能用重亚硫酸盐测序法证实。

现已较清楚CpG岛的甲基化在基因沉默中起着重要作用,但其过程中的很多具体环节及机制尚不清楚。如:基因沉默是由启动子区个别位点CpG发生甲基化引起的,还是由全部的CpG发生甲基化而引起的。但研究认为启动子区胞嘧啶甲基化导致基因表达沉默并非是由于甲基基团阻碍了转录因子的结合,而是由于那些能与甲基化区特异性结合的蛋白发挥作用[52,53]而引起的。

现已发现一些能与CpG甲基化位点特异性结合的蛋白,一种是MeCP1,它能够与对称性多位点甲基化CpG位点相结合,另一种是MeCP2,不同于MeCP1的是它能够与单甲基化CpG位点特异结合,且不与半甲基化位点结合。而且报道的MBD1、MBD2、MBD3、MBD4蛋白都与MeCP2有着相同的特性。

这种方法是:MBD柱中含有甲基化位点特异性结合蛋白的功能区(Methylation Binding Domain, MBD),能够与甲基化位点特异性结合。该蛋白一端通过连接多个组蛋白与凝胶结合,其另一端的多肽功能区暴露,这样当待测DNA片段通过时,含有甲基化位点的DNA即与MBD多肽牢固结合。在Masahiko Shiraishi等的研究中还发现,甲基化位点的数目是决定MBD柱结合力的最主要因素,而且,甲基化的密度也对其有重要的影响,也就是说,相同长度的DNA片段中甲基化位点密度越高,其结合力就越强[50]。

这种方法的优点是:1.是一种高通量的检测方法;2.可对未知片段进行初筛,选出的含有甲基化的片段进一步检测以发现新的甲基化位点;3.方法快速、简便。缺点是:1.一些DNA片段的特殊构型也可与MBD柱相结合,造成MBD非特异性捕获而引起假阳性(如:EcoRⅡ可与MBD结合);2.是一种定性而非定量的方法;3. 由于MBD柱中所含多肽的量不完全相同,因此,使用不同的MBD柱或单个柱经多次使用得到的分离产物之间会存在差异。

3 )联合甲基化敏感性限制性内切酶的MBD(Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes,COMPARE-MS)

Srinivasan Yegnasubramanian 2006年报道了一种新技术COMPARE-MS,该法将MBD柱层析法与MS-RE联用,互补了各自单用的弊处,能够快速、敏感的检测DNA甲基化情况,可用于临床标本检测,作为早期诊断和肿瘤分级的依据[56]。其过程是:用非待测区的内切酶和甲基化敏感的限制性内切酶同时消化DNA片段,随后通过MBD柱捕获,保留了含有甲基化区的片段,最后通过实时PCR扩增定量分析。

鉴于而DNA甲基化在维持正常胚胎发育、遗传印记、细胞功能等过程中起着极其重要的作用。人们对甲基化研究的不断深入,出现了许多甲基化检测方法用来满足不同类型研究的要求。

提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序