提问
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

组蛋白修饰

互联网

3126
组蛋白修饰
组蛋白 的某些赖氨酸能够发生单、双、三甲基化,精氨酸可发生单或双甲基化,其他修饰方式还有乙酰化、磷酸化、泛素化以及ADP化。它们的联合组成了组蛋白密码,并通过与其他蛋白的作用调控染色质组装和基因的表达。
组蛋白修饰方式示意图
注:P为磷酸化;A为乙酰化;M为甲基化
1.甲基化
组蛋白甲基化是由组蛋白甲基化转移酶(histonemethyl transferase,HMT)完成的。甲基化可发生在组蛋白的赖氨酸和精氨酸残基上,而且赖氨酸残基能够发生单、双、三甲基化,而精氨酸残基能够单、双甲基化,这些不同程度的甲基化极大地增加了组蛋白修饰和调节基因表达的复杂性。甲基化的作用位点在赖氨酸(Lys)、精氨酸(Arg)的侧链N原子上。组蛋白H3的第4、9、27和36位,H4的第20位Lys,H3的第2、l7、26位及H4的第3位Arg都是甲基化的常见位点。研究表明・,组蛋白精氨酸甲基化是一种相对动态的标记,精氨酸甲基化与基因激活相关,而H3和H4精氨酸的甲基化丢失与基因沉默相关。相反,赖氨酸甲基化似乎是基因表达调控中一种较为稳定的标记。例如,H3第4位的赖氨酸残基甲基化与基因激活相关,而第9位和第27位赖氨酸甲基化与基因沉默相关。此外,H4―K20的甲基化与基因沉默相关,H3―K36和H3―K79的甲基化与基因激活有关。但应当注意的是,甲基化个数与基因沉默和激活的程度相关。
2.乙酰化
组蛋白乙酰化主要发生在H3、H4的N端比较保守的赖氨酸位置上,是由组蛋白乙酰转移酶和组蛋白去乙酰化酶协调进行。组蛋白乙酰化呈多样性,核小体上有多个位点可提供乙酰化位点,但特定基因部位的组蛋白乙酰化和去乙酰化是以一种非随机的、位置特异的方式进行。乙酰化可能通过对组蛋白电荷以及相互作用蛋白的影响,来调节基因转录。早期对染色质及其特征性组分进行归类划分时就有人总结指出:异染色质结构域组蛋白呈低乙酰化,常染色质结构域组蛋白呈高乙酰化。最近有研究发现,某些HAT复合物含有一些常见的转录因子,某些HDAC复合物含有已被证实的阻遏蛋白。这些发现支持了高乙酰化与激活基因表达、低乙酰化与抑制基因表达有关的看法。
3.组蛋白的其他修饰方式
相对而言,组蛋白的甲基化修饰方式是最稳定的,所以最适合作为稳定的表观遗传信息。而乙酰化修饰具有较高的动态,另外还有其他不稳定的修饰方式,如磷酸化、腺苷酸化、泛素化、ADP核糖基化等等。这些修饰更为灵活的影响染色质的结构与功能,通过多种修饰方式的组合发挥其调控功能。所以有人称这些能被专识别的修饰信息为组蛋白密码。这些组蛋白密码组合变化非常多,因此组蛋白共价修饰可能是更为精细的基因表达方式。
另外,研究发现H2B的泛素化可以影响H3K4和H3K79的甲基化,这也提示了各种修饰间也存在着相互的关联。
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序