提问
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

用PCR进行基因分型

互联网

4044

与许多一次做数百块Southern blots的研究人员一样,我第一次用PCR做基因分型(genotyping)时觉得见效很快,不再需要等几天才能看到结果,不再需要DNA显微图像或者操作紫外线了。随着技术的不断进步,RCR使基因组学和转录组学发生了翻天覆地的变化,甚至随着免疫PCR的普及开始进军蛋白组学。

目前有许多以RNA为基础的基因分型技术,有些只是名称不同,简单到只是跑块胶,有些很复杂,需要检测单核苷酸多态性的累积。选择哪种方法当然依据需要而定,但这里对某些以PCR为基础的基因分型分析的优点和缺点做了一个简要总结。下标列出了一些常见的系统和平台及其详细特征。

<font>The Simple Acronyms</font>

最基本的设计是序列特异引物(sequence-specific primers ,SSP )或称等位基因特异性引物延伸(allele specific primer extension ,ASPE)、序列特异性寡核苷酸探针(sequence-specific oligonucleotide probes,SSOP)或等位基因特异性寡核苷酸(allele-specific oligonucleotides ,ASO)、限制性片段长度多态性分析(restriction fragment length polymorphism,RFLP)。进行低通量研究时,这些分析不需要特异仪器。

一般情况下,SSP中变的异体专一引物所检测的特异突变或者是positive 或者是negative;在SSOP中,将标记过的扩增子(amplicon)绑定在位于杂交斑点上的变异体专一探针,检测突变;RFLP中,用限制性内源性降解PCR产物,通过观察切开或者未切开片段,得到结果。尽管突变的位点对SSP设计引物有限制,但SSOP和RFLP为引物设计带来了很大弹性,引物可以在任何地点,尝到甚至可以跨越突变。

我还发现RFLP(又称扩增片段长度多态性,amplified fragment length polymorphism,AFLP)得到明确结果,鉴别突变有合适和和便宜的核酸内切酶。加入标记过的引物,大多数遗传分析仪可推算片段长度。问题在于它需要post-PCR操作,意味着污染的风险,而且也不适合高通量研究。

对于大项目,所有三种方法都很昂贵和耗时,但因为大多数自动化方法要求扩增小片段,基本的设计是分析大片段的唯一选择。而且,有旁向性同源基因(paralogs)的基因需要具有位点特异性的引物。假如目的突变和位点特异的引物相距较远,基本方法是必需的。

<font>熔解曲线法</font>

DNA的碱基组成影响变性温度。利用特异荧光染料或者标记探针的高分辨率熔解点分析能够在PCR(标准设备上)进行5~10分钟后鉴别一个PNA片段上的寡核苷酸突变,所需的专用设备包括Idaho Technology公司的LightScanner(或HR-1)和罗氏的LightTyper,但某些实时PCR平台也有这种功能。

该方法还可用于检测新突变和未知突变,专用设备能够在短时间内分析384孔平板,使高通量分析成为可能。至少可以区分一个片段的4种熔解温度,用六种颜色标记探针。因此,至少一次能够探测24个靶标,因此这种方法很便宜,而且对引物设计没有要求,系统始终处于封闭的管中,降低了污染风险。一些变异在低分辨率平台中会丢失,但这种方法有望成为最流行的筛选和检测突变的方法。

提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序