丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

【资源★分享】电泳技术

丁香园论坛

1961
感谢您对蛋白版的支持。
不过请在标题中注明“转帖”。
skykiller



梯度凝胶电泳
梯度凝胶电泳也通常采用聚丙烯酰胺凝胶,但不是在单一浓度(孔径)的凝胶上进行,而是形成梯度凝胶。从凝胶顶部到底部丙烯酰胺的浓度呈梯度变化,如通常顶部凝胶浓度为5%,底部凝胶浓度为25%。凝胶梯度是通过梯度混合器形成的,高浓度的丙烯酰胺溶液首先加入到玻璃平板中,而后溶液浓度呈梯度下降,因此在凝胶的顶部孔径较大,而在凝胶的底部孔径较小。梯度凝胶电泳也通常加入SDS,并有浓缩胶。电泳过程与SDS-聚丙烯酰胺凝胶电泳基本类似。与单一浓度的凝胶相比,梯度凝胶有几个优点:①首先,梯度凝胶比单一浓度凝胶的分离范围更宽,可以同时分离较大范围分子量的蛋白质。单一凝胶电泳对于分子量超过其分离范围的蛋白质,过大或过小,都不能分离。而梯度凝胶孔径范围比单一凝胶大,分子量较大的蛋白质可以在凝胶顶部大孔径部分得到分离,而分子量较小的蛋白质可以在凝胶底部小孔径部分得到分离,所以分子量较大和较小的蛋白质可以同时得到分离。例如用4%~30%的梯度胶可以分离分子量5万~200万的蛋白质。② 另一个优点是梯度凝胶可以分辨分子量相差较小,在单一浓度凝胶中不能分辨的蛋白质。电泳过程中,蛋白质在梯度凝胶中迁移,经过的孔径越来越小,直到凝胶的孔径不能通透,这样电泳过程中蛋白质就被浓缩,集中在一个很窄的区带中。而分子量略小的蛋白质可以迁移得更靠前一些,被集中在略前面的区带中。由于梯度凝胶孔径逐步变小,在蛋白质不能通透的孔径附近对蛋白有浓缩作用,所以电泳后形成很窄的区带,可以分辨出分子量相差较小的蛋白质。对于太稀的样品,在电泳过程中可以将样品分几次加样,大小不同的蛋白质分子最终都会滞留在其相应的凝胶孔径中而得到分离。③ 可以直接测定天然状态蛋白质的分子量而不需要解离为亚基,因此这一方法可以与SDS-PAGE测定分子量的方法互为补充。
梯度凝胶电泳主要适用于测定球蛋白的分子量,而对纤维蛋白将产生较大的误差。由于分子量的测定必须是在未知和标准蛋白质分子到达完全被阻止迁移的孔径时才能成立,因此电泳时要使用较高的电压,例如平板凝胶为0.5mm厚,使用600V电压, 50mA电流,电泳时间约需2小时。

等电聚焦
等电聚焦电泳是根据两性物质等电点(pI)的不同而进行分离的,它具有很高的分辨率,可以分辨出等电点相差0.01的蛋白质,是分离两性物质如蛋白质的一种理想方法。等电聚焦的分离原理是在凝胶中通过加入两性电解质形成一个pH梯度,两性物质在电泳过程中会被集中在与其等电点相等的pH区域内,从而得到分离。
两性电解质是人工合成的一种复杂的多氨基-多羧基的混合物。不同的两性电解质有不同的pH梯度范围,既有较宽的范围如pH=3~10,也有各种较窄的范围如pH=7~8。要根据待分离样品的情况选择适当的两性电解质,使待分离样品中各个组分都在两性电解质的pH范围内,两性电解质的pH范围越小,分辨率越高。
等电聚焦多采用水平平板电泳,也使用管式电泳。由于两性电解质的价格昂贵,使用1~2 mm厚的凝胶进行等电聚焦价格较高。使用两条很薄的胶带做为玻璃板间隔,可以形成厚度仅0.15 mm的薄层凝胶,大大降低成本,所以等电聚焦通常使用这种薄层凝胶。由于等电聚焦过程需要蛋白质根据其电荷性质在电场中自由迁移,通常使用较低浓度的聚丙烯酰胺凝胶(如4%)以防止分子筛作用,也经常使用琼脂糖,尤其是对于分子量很大的蛋白质。制作等电聚焦薄层凝胶时,首先将两性电解质、核黄素与丙烯酰胺贮液混合,加入到带有间隔胶条的玻璃板上,而后在上面加上另一块玻璃板,形成平板薄层凝胶。经过光照聚合后,将一块玻璃板橇开移去,将一小薄片湿滤纸分别置于凝胶两侧,连接凝胶和电极液(阳极为酸性如磷酸溶液,阴极为碱性如氢氧化钠溶液)。接通电源,两性电解质中不同的等电点的物质通过电泳在凝胶中形成pH梯度,从阳极侧到阴极侧pH值由低到高呈线性梯度分布。而后关闭电源,上样时取一小块滤纸吸附样品后放置在凝胶上,通电30 min后样品通过电泳离开滤纸加入凝胶中,这时可以去掉滤纸。最初样品中蛋白质所带的电荷取决于放置样品处凝胶的pH值,等电点在pH值以上的蛋白质带正电,在电场的作用下向阴极移动,在迁移过程中,蛋白质所处的凝胶的pH值逐渐升高,蛋白质所带的正电逐渐减少,到达pH=pI处的凝胶区域时蛋白质不带电荷,停止迁移。同样,等电点在上样处凝胶pH以下的蛋白质带负电,向阳极移动,最终到达pH=pI处的凝胶区域停止。可见等电聚焦过程无论样品加在凝胶上什么位置,各种蛋白质都能向着其等电点处移动,并最终到达其等电点处,对最后的电泳结果没有影响。所以有时样品可以在制胶前直接加入到凝胶溶液中。使用较高的电压(如2000V,0.5mm平板凝胶)可以得到较快速的分离(0.5~1小时),但应注意对凝胶的冷却以及使用恒定功率的电源。凝胶结束后对蛋白质进行染色时应注意,由于两性电解质也会被染色,使整个凝胶都被染色。所以等电聚焦的凝胶不能直接染色,要首先经过10%的三氯乙酸的浸泡以除去两性电解质后才能进行染色。
等电聚焦还可以用于测定某个未知蛋白质的等电点,将一系列已知等电点的标准蛋白(通常pI在3.5~10之间)及待测蛋白同时进行等电聚焦。测定各个标准蛋白电泳区带到凝胶某一侧边缘的距离对各自的pI值作图,即得到标准曲线。而后测定待测蛋白的距离,通过标准曲线即可求出其等电点。
等电聚焦具有很高的灵敏度,特别适合于研究蛋白质微观不均一性,例如一种蛋白质在SDS-聚丙烯酰胺凝胶电泳中表现单一带,而在等电聚焦中表现三条带。这可能是由于蛋白质存在单磷酸化、双磷酸化和三磷酸化形式。由于几个磷酸基团不会对蛋白质的分子量产生明显的影响,因此在SDS-聚丙烯酰胺凝胶电泳中表现单一带,但由于它们所带的电荷有差异,所以在等电聚焦中可以被分离检测到。同功酶之间可能只有一两个氨基酸的差别,利用等电聚焦也可以得到较好的分离效果。由于等电聚焦过程中蛋白质通常是处于天然状态的,所以可以通过前面介绍的活性染色的方法对酶进行检测。等电聚焦主要用于分离分析,但也可以用于纯化制备。虽然成本较高,但操作简单、纯化效率很高。除了通常的方法,制备性等电聚焦也可以在垂直玻璃管中的梯度蔗糖溶液或颗粒状凝胶如Sephadex G-75中进行。

二维聚丙烯酰胺凝胶电泳(2D―PAGE)
二维聚丙烯酰胺凝胶电泳技术结合了等电聚焦技术(根据蛋白质等电点进行分离)以及SDS-聚丙烯酰胺凝胶电泳技术(根据蛋白质的大小进行分离)。这两项技术结合形成的二维电泳是分离分析蛋白质最有效的一种电泳手段。通常第一维电泳是等电聚焦,在细管中(φ1~3 mm)中加入含有两性电解质、8M的脲以及非离子型去污剂的聚丙烯酰胺凝胶进行等电聚焦,变性的蛋白质根据其等电点的不同进行分离。而后将凝胶从管中取出,用含有SDS的缓冲液处理30 min,使SDS与蛋白质充分结合。将处理过的凝胶条放在SDS-聚丙烯酰胺凝胶电泳浓缩胶上,加入丙烯酰胺溶液或熔化的琼脂糖溶液使其固定并与浓缩胶连接。在第二维电泳过程中,结合SDS的蛋白质从等电聚焦凝胶中进入SDS-聚丙烯酰胺凝胶,在浓缩胶中被浓缩,在分离胶中依据其分子量大小被分离。这样各个蛋白质根据等电点和分子量的不同而被分离、分布在二维图谱上。细胞提取液的二维电泳可以分辨出1000~2000个蛋白质,有些报道可以分辨出5000~10000个斑点,这与细胞中可能存在的蛋白质数量接近。由于二维电泳具有很高的分辨率,它可以直接从细胞提取液中检测某个蛋白。例如将某个蛋白质的mRNA转入到青蛙的卵母细胞中,通过对转入和未转入细胞的提取液的二维电泳图谱的比较,转入mRNA的细胞提取液的二维电泳图谱中应存在一个特殊的蛋白质斑点,这样就可以直接检测mRNA的翻译结果。二维电泳是一项很需要技术并且很辛苦的工作。目前已有一些计算机控制的系统可以直接记录并比较复杂的二维电泳图谱。

蛋白质的检测、鉴定及回收
检测蛋白质最常用的染色剂是考马斯亮蓝R-250(CBB,Coomassie brilliant blue),通常是用甲醇:水:冰醋酸(体积比为45:45:10)配制0.1%或0.25%(W/V)的考马斯亮蓝溶液作为染色液。这种酸-甲醇溶液使蛋白质变性,固定在凝胶中,防止蛋白质在染色过程中在凝胶内扩散,通常染色需2小时。脱色液是同样的酸-甲醇混合物,但不含染色剂,脱色通常需过夜摇晃进行。考马斯亮蓝染色具有很高的灵敏度,在聚丙烯酰胺凝胶中可以检测到0.1 mg的蛋白质形成的染色带。考马斯亮蓝与某些纸介质结合非常紧密,所以不能用于染色滤纸、醋酸纤维素薄膜以及蛋白质印迹(在硝化纤维素纸上)。在这种情况下通常是用10%的三氯乙酸浸泡使蛋白质变性,而后使用不对介质有强烈染色的染料如溴酚蓝、氨基黑等对蛋白质进行染色。
银染是比考马斯亮蓝染色更灵敏的一种方法,它是通过银离子(Ag+)在蛋白质上被还原成金属银形成黑色来指示蛋白区带的。银染可以直接进行也可以在考马斯亮蓝染色后进行,这样凝胶主要的蛋白带可以通过考马斯亮蓝染色分辨,而细小的考马斯亮蓝染色检测不到的蛋白带由银染检测。银染的灵敏度比考马斯亮蓝染色高100倍,可以检测低于1 ng的蛋白质。
糖蛋白通常使用过碘酸-Schiff试剂(PAS)染色,但PAS染色不十分灵敏,染色后通常形成较浅的红-粉红带,难以在凝胶中观察。目前更灵敏的方法是将凝胶印迹后(下面介绍)用凝集素检测糖蛋白。凝集素是从植物中提取的一类糖蛋白,它们能识别并选择性的结合特殊的糖,不同的凝集素可以结合不同的糖。将凝胶印迹用凝集素处理,再用连接辣根过氧化物酶的抗凝集素抗体处理,然后再加入过氧化物酶的底物,通过生成有颜色的产物就可以检测到凝集素结合情况。这样凝胶印迹用不同的凝集素检测不仅可以确定糖蛋白,而且可以得到糖蛋白中糖基的信息。
通过扫描光密度仪对染色的凝胶进行扫描可以进行定量分析,确定样品中不同蛋白质的相对含量。扫描仪测定凝胶上不同迁移距离的吸光度值,各个染色的蛋白带形成对应的峰,峰面积的大小可以代表蛋白质的含量的多少。另外一种简单的方法是将染色的蛋白带切下来,在一定体积的50%吡啶溶液中摇晃过夜溶解染料,而后通过分光光度计测定吸光度值就可以估算蛋白质的含量。但应注意,蛋白质只有在一定的浓度范围内其含量才与吸光度值成线性关系,另外不同的蛋白质即使在含量相同的情况下染色程度也可能有所不同,所以上面的方法对蛋白质含量的测定只能是一种半定量的结果。
尽管凝胶电泳通常是作为一种分析工具使用,它也可以用于蛋白质的纯化制备。但电泳后需将蛋白质从凝胶中回收,通常是将所需的蛋白质区带部分的凝胶切下,通过电泳的方法将蛋白质从凝胶中洗脱下来(称为电洗脱)。目前有各种商品电洗脱池装置。最简单的方法是将切下的凝胶装入透析袋内加入缓冲液浸泡,再将透析袋浸入缓冲液中进行电泳,蛋白质就会向某个电极方向迁移而离开凝胶进入透析袋内的缓冲液。由于蛋白质不能通过透析袋,所以电泳后蛋白质就留在透析袋的缓冲液中。电洗脱后可通一个反向电流,持续几秒钟,使吸附在透析袋上的蛋白质进入缓冲液,这样就可以将凝胶中的蛋白质回收。

蛋白质印迹(Western blotting)
印迹法(blotting)是指将样品转移到固相载体上,而后利用相应的探测反应来检测样品的一种方法。1975年,Southern建立了将DNA转移到硝酸纤维素膜(NC膜)上,并利用DNA-RNA杂交检测特定的Dundefined*段的方法,称为Southern印迹法。而后人们用类似的方法,对RNA和蛋白质进行印迹分析,对RNA的印迹分析称为Northern印迹法,对单向电泳后的蛋白质分子的印迹分析称为Western印迹法,对双向电泳后蛋白质分子的印迹分析称为Eastern印迹法。
蛋白质印迹法首先是要将电泳后分离的蛋白质从凝胶中转移到硝酸纤维素膜上,通常有两种方法:毛细管印迹法和电泳印迹法。毛细管印迹法是将凝胶放在缓冲液浸湿的滤纸上,在凝胶上放一片硝酸纤维素膜,再在上面放一层滤纸等吸水物质并用重物压好,缓冲液就会通过毛细作用流过凝胶。缓冲液通过凝胶时会将蛋白质带到硝酸纤维素膜上,硝酸纤维素膜可以与蛋白质通过疏水相互作用产生不可逆的结合。这个过程持续过夜,就可以将凝胶中的蛋白质转移到硝酸纤维素膜上。但这种方法转移的效率较低,通常只能转移凝胶中一小部分蛋白质(10%~20%)。电泳印迹可以更快速有效的进行转移。这种方法是用有孔的塑料和有机玻璃板将凝胶和硝酸纤维素膜夹成“三明治”形状,而后浸入两个平行电极中间的缓冲液中进行电泳,选择适当的电泳方向就可以使蛋白质离开凝胶结合在硝酸纤维素膜上。
转移后的硝酸纤维素膜就称为一个印迹(blot),用于对蛋白质的进一步检测。印迹首先用蛋白溶液(如10%的BSA)处理以封闭硝酸纤维素膜上剩余的疏水结合位点,而后用所要研究的蛋白质的抗血清(一抗)处理,印迹中只有待研究的蛋白质与一抗结合,而其它蛋白质不与一抗结合,这样清洗去除未结合的一抗后,印迹中只有待研究的蛋白质的位置上结合着一抗。处理过的印迹进一步用适当标记的二抗处理,二抗是指一抗的抗体,如一抗是从鼠中获得的,则二抗是抗鼠Ig G的抗体。处理后,带有标记的二抗与一抗结合,可以指示一抗的位置,即是待研究的蛋白质的位置。目前有结合各种标记物的抗特定Ig G的抗体可以直接购买作为标记的二抗。最常用的一种是酶连的二抗,印迹用酶连二抗处理后,再用适当的底物溶液处理,当酶纯化底物生成有颜色的产物时,就会产生可见的区带,指示所要研究的蛋白质的位置。在酶连抗体中使用的酶通常是碱性磷酸酶或辣根过氧化物酶。碱性磷酸酶可以将无色的底物5-溴-4-氯吲哚磷酸盐(BCIP)转化为蓝色的产物;而辣根过氧化物酶可以以H2O2为底物,将3-氨基-9-乙基咔唑氧化成褐色产物或将4-氯萘酚氧化成蓝色产物。另一种检测辣根过氧化物酶的方法是用增强化学发光法,辣根过氧化物酶在H2O2存在下,氧化化学发光物质鲁米诺(luminol,氨基苯二酰一肼)并发光,在化学增强剂存在下光强度可以增大1000倍,通过将印迹放在照相底片上感光就可以检测辣根过氧化物酶的存在。除了酶连二抗作为指示剂,也可以使用其它指示剂,主要包括以下一些:
I125标记的二抗:可以通过放射性自显影检测。
荧光素异硫氰酸盐标记的二抗:可以通过在紫外灯下产生荧光来检测。
I125标记金黄色葡萄球菌蛋白A(Protein A):Protein A可以与Ig G的Fc区特异性的结合,因此Protein A可以代替二抗:I125标记的Protein A通过放射性自显影检测。
金标记的二抗:二抗通过微小的金颗粒包裹,与一抗结合时可以表现红色。
生物素结合的二抗:印迹用生物素结合的二抗处理后,再用碱性磷酸酶或辣根过氧化物酶标记的凝集素处理。生物素可以与凝集素紧密结合,这种方法实际上相当于通过生物素与凝集素的紧密结合将二抗与酶连接,通过酶的显色反应就可以进行检测。这种方法的优点是由于生物素是一个小分子蛋白,一个抗体上可以结合多个生物素,也就可以结合多个酶连接的凝集素,可以大大增强显色反应的信号。
除了使用抗体或蛋白作为检测特定蛋白的探针以外,有时也使用其它探针如放射性标记的DNA,可以检测印迹中的DNA结合蛋白。

毛细管电泳
毛细管电泳(capillary electrophoresis, CE)又叫高效毛细管电泳(HPCE), 是近年来发展最快的分析方法之一。1981年Jorgenson和Lukacs首先提出在75 内径毛细管柱内用高电压进行分离, 创立了现代毛细管电泳。1984年Terabe等建立了胶束毛细管电动力学色谱。1987年Hjerten 建立了毛细管等电聚焦, Cohen和Karger提出了毛细管凝胶电泳。1988~1989年出现了第一批毛细管电泳商品仪器。短短几年内, 由于CE符合了以生物工程为代表的生命科学各领域中对多肽、蛋白质(包括酶,抗体)、核苷酸乃至脱氧核糖核酸(DNA)的分离分析要求, 得到了迅速的发展。CE是经典电泳技术和现代微柱分离相结合的产物。CE和高效液相色谱法(HPLC)相比, 其相同处在于都是高效分离技术, 仪器操作均可自动化, 且二者均有多种不同分离模式。二者之间的差异在于:CE用迁移时间取代HPLC中的保留时间, CE的分析时间通常不超过30min, 比HPLC速度快;对CE而言, 从理论上推得其理论塔板高度和溶质的扩散系数成正比, 对扩散系数小的生物大分子而言, 其柱效就要比HPLC高得多;CE所需样品为nl级, 最低可达270fl, 流动相用量也只需几毫升, 而HPLC所需样品为μl级, 流动相则需几百毫升乃至更多;但CE仅能实现微量制备, 而HPLC可作常量制备。CE和普通电泳相比, 由于其采用高电场, 因此分离速度要快得多;检测器则除了未能和原子吸收及红外光谱连接以外, 其它类型检测器均已和CE实现了连接检测;一般电泳定量精度差,而CE和HPLC相近;CE操作自动化程度比普通电泳要高得多。总之, CE的优点可概括为三高二少:高灵敏度, 常用紫外检测器的检测限可达10-13~10-15mol,激光诱导荧光检测器则达10-19~10-21mol;高分辨率, 其每米理论塔板数为几十万;高者可达几百万乃至千万, 而HPLC一般为几千到几万;高速度, 最快可在60s内完成, 在250s内分离10种蛋白质, 1.7min分离19种阳离子, 3min内分离30种阴离子; 样品少, 只需nl (10-9 L)级的进样量;成本低, 只需少量(几毫升)流动相和价格低廉的毛细管。由于以上优点以及分离生物大分子的能力, 使CE成为近年来发展最迅速的分离分析方法之一。当然CE还是一种正在发展中的技术, 有些理论研究和实际应用正在进行与开发。
  “CE”统指以高压电场为驱动力, 以毛细管为分离通道, 依据样品中各组分之间淌度和分配行为上的差异而实现分离的一类液相分离技术。(见图16 毛细管电泳仪器示意图)。其仪器结构包括一个高压电源, 一根毛细管, 一个检测器及两个供毛细管两端插入而又可和电源相连的缓冲液贮瓶。在电解质溶液中, 带电粒子在电场作用下, 以不同的速度向其所带电荷相反方向迁移的现象叫电泳。CE所用的石英毛细管柱, 在pH>3情况下, 其内表面带负电, 和溶液接触时形成了一双电层。在高电压作用下, 双电层中的水合阳离子引起流体整体地朝负极方向移动的现象叫电渗, 粒子在毛细管内电解质中的迁移速度等于电泳和电渗流(EOF)两种速度的矢量和, 正离子的运动方向和电渗流一致, 故最先流出;中性粒子的电泳流速度为“零”,故其迁移速度相当于电渗流速度;负离子的运动方向和电渗流方向相反, 但因电渗流速度一般都大于电泳流速度, 故它将在中性粒子之后流出, 从而因各种粒子迁移速度不同而实现分离。
电渗是CE中推动流体前进的驱动力, 它使整个流体像一个塞子一样以均匀速度向前运动, 使整个流型呈近似扁平型的“塞式流”。(见图17 )它使溶质区带在毛细管内原则上不会扩张。但在HPLC中,采用的压力驱动方式使柱中流体呈抛物线型, 其中心处速度是平均速度的两倍, 导致溶质区带本身扩张, 引起柱效下降, 使其分离效率不如CE。
理论分析表明, 增加速度是减少谱带展宽、提高效率的重要途径, 增加电场强度可以提高速度。但高场强导致电流增加, 引起毛细管中电解质产生焦耳热(自热)。自热将使流体在径向产生抛物线型温度分布, 即管轴中心温度要比近壁处温度高。因溶液粘度随温度升高呈指数下降, 温度梯度使介质粘度在径向产生梯度, 从而影响溶质迁移速度, 使管轴中心的溶质分子要比近管壁的分子迁移得更快, 造成谱带展宽, 柱效下降。一般来说温度每提高1℃, 将使淌度增加2% (所谓淌度, 即指溶质在单位时间间隔内和单位电场上移动的距离)。此外, 温度改变使溶液pH值、粘度等发生变化, 进一步导致电渗流、溶质分子的电荷分布(包括蛋白质的结构)、离子强度等的改变, 造成淌度改变、重复性变差、柱效下降等现象。降低缓冲液浓度可降低电流强度, 使温差变化减小。高离子强度缓冲液可阻止蛋白质吸附于管壁, 并可产生柱上浓度聚焦效应, 防止峰扩张, 改善峰形。减小管径在一定程度上缓解了由高电场引起的热量积聚, 但细管径使进样量减少, 造成进样、检测等技术上的困难。因此, 加快散热是减小自热引起的温差的重要途径。液体的导热系数要比空气高100倍。现在有的采用液体冷却方式的毛细管电泳仪可使用离子强度高达0.5mol/L的缓冲液进行分离, 或使用200 直径的毛细管进行微量制备, 仍能达到良好的分离效果和重现性。
CE现有六种分离模式,分述如下:
  1. 毛细管区带电泳(capillary zone electrophoresis, CZE), 又称毛细管自由电泳, 是CE中最基本、应用最普遍的一种模式。前述基本原理即是CZE的基本原理。
  2. 胶束电动毛细管色谱 (micellar electrokinetic capillary chromatography, MECC), 是把一些离子型表面活性剂 (如十二烷基硫酸钠, SDS) 加到缓冲液中, 当其浓度超过临界浓度后就形成有一疏水内核、外部带负电的胶束。虽然胶束带负电, 但一般情况下电渗流的速度仍大于胶束的迁移速度, 故胶束将以较低速度向阴极移动。溶质在水相和胶束相(准固定相)之间产生分配, 中性粒子因其本身疏水性不同, 在二相中分配就有差异, 疏水性强的胶束结合牢, 流出时间长, 最终按中性粒子疏水性不同得以分离。MECC使CE能用于中性物质的分离, 拓宽了CE的应用范围, 是对CE极大的贡献。
  3. 毛细管凝胶电泳 (capillary gel electrophoresis, CGE) 是将板上的凝胶移到毛细管中作支持物进行的电泳。凝胶具有多孔性,起类似分子筛的作用, 溶质按分子大小逐一分离。凝胶粘度大, 能减少溶质的扩散, 所得峰形尖锐, 能达到CE中最高的柱效。常用聚丙烯酰胺在毛细管内交联制成凝胶柱, 可分离、测定蛋白质和DNA的分子量或碱基数, 但其制备麻烦, 使用寿命短。如采用粘度低的线性聚合物如甲基纤维素代替聚丙烯酰胺, 可形成无凝胶但有筛分作用的无胶筛分(Non-Gel Sieving)介质。它能避免空泡形成, 比凝胶柱制备简单,寿命长, 但分离能力比凝胶柱略差。CGE和无胶筛分正在发展成第二代DNA序列测定仪, 将在人类基因组织计划中起重要作用。
  4. 毛细管等电聚焦 (capillary isoelectric focusing, CIEF) 将普通等电聚焦电泳转移到毛细管内进行。通过管壁涂层使电渗流减到最小, 以防蛋白质吸附及破坏稳定的聚焦区带, 再将样品与两性电解质混合进样, 两端贮瓶分别为酸和碱。加高压(6~8kV)3~5min后, 毛细管内部建立pH梯度,蛋白质在毛细管中向各自等电点聚焦, 形成明显的区带。最后改变检测器末端贮瓶内的pH值, 使聚焦的蛋白质依次通过检测器而得以确认。
  5. 毛细管等速电泳 (capillary isotachor-phoresis,,CITP) 是一种较早的模式, 采用先导电解质和后继电解质, 使溶质按其电泳淌度不同得以分离, 常用于分离离子型物质, 目前应用不多。
  6. 毛细管电色谱 (capillary electrochromatography, CEC) 是将HPLC中众多的固定相微粒填充到毛细管中, 以样品与固定相之间的相互作用为分离机制, 以电渗流为流动相驱动力的色谱过程, 虽柱效有所下降, 但增加了选择性。此法有发展前景。
毛细管电泳 (CE) 除了比其它色谱分离分析方法具有效率更高、速度更快、样品和试剂耗量更少、应用面同样广泛等优点外, 其仪器结构也比高效液相色谱 (HPLC) 简单。CE只需高压直流电源、进样装置、毛细管和检测器。前三个部件均易实现, 困难之处在于检测器。特别是光学类检测器, 由于毛细管电泳溶质区带的超小体积的特性导致光程太短, 而且圆柱形毛细管作为光学表面也不够理想, 因此对检测器灵敏度要求相当高。当然在CE中也有利于检测的因素, 如:在HPLC中, 因稀释之故,溶质到达检测器的浓度一般是其进样端原始浓度的1%, 但在CE中, 经优化实验条件后, 可使溶质区带到达检测器时的浓度和在进样端开始分离前的浓度相同。而且CE中还可采用堆积等技术使样品达到柱上浓缩效果, 使初始进样体积浓缩为原体积的1/10~1%, 这对检测十分有利。因此从检测灵敏度的角度来说, HPLC具有良好的浓度灵敏度, 而CE提供了很好的质量灵敏度。总之, 检测仍是CE中的关键问题,有关研究报道很多, 发展也很快。迄今为止, 除了原子吸收光谱、电感耦合等离子体发射光谱(ICP)及红外光谱未用于CE外, 其它检测手段如:紫外、荧光、电化学、质谱、激光等类型检测器均已用于CE。
  与HPLC类似, CE中应用最广泛的是紫外/可见检测器。按检测方式可分为固定波长或可变波长检测器和二极管阵列或波长扫描检测器两类。前一类检测器采用滤光片或光栅来选取所需检测波长, 优点在于结构简单, 灵敏度比后一类检测器高;后一类检测器能提供时间--波长--吸光度的三维图谱, 优点在于在线紫外光谱可用来定性、鉴别未知物。有些商用仪器的二极管阵列检测器还可做到在线峰纯度检查, 即在分离过程中便可得知每个峰含有几种物质;缺点在于灵敏度比前一类略差。采用快速扫描的光栅获取三维图谱方式时, 其扫描速度受到机械动作速度的限制。用二极管阵列方式, 扫描速度受到计算机数据存贮容量大小的限制。由于CE的峰宽较窄, 理论上要求能对最窄的峰采集20个左右的数据, 因此要很好地选取扫描频率, 才能得到理想的结果。
版主skykiller留言:
感谢您对蛋白版的支持。
不过请在标题中注明“转帖”。
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序