抗EBV抑制剂研究新进展
互联网
上海药物研究所药物发现与设计中心(DDDC)蒋华良课题组罗成副研究员与美国宾夕法尼亚大学Wistar研究所Paul M. Lieberman教授合作,经过近两年的努力,在世界上首次发现多个小分子化合物能够通过阻断EBNA1与DNA的结合,进而抑制EBV复制。研究论文于2010年4月12日发表在《公共科学图书馆·综合》PLoS ONE上。
疱疹病毒(Epstein-Barr virus,EBV)的潜伏感染能够诱导伯基特淋巴瘤、鼻咽癌、胃癌和霍奇金淋巴瘤等多种淋巴细胞源性和上皮细胞源性的恶性肿瘤的产生。在全球范围内,有90%以上的人感染过EBV。因此,EBV被世界卫生组织列为人类致癌病毒。到目前为止,EBV感染引起的致癌作用不能得到有效地防止或治疗,世界上尚未有可有效用于治疗与EBV所诱导的相关疾病的药物或针对EBV潜伏感染的疗法。因此,寻找可作为清除EBV潜伏感染的理想靶标,进而用于药物设计研究成为一直以来是当前EBV研究的一个难点和热点。
在本研究中,罗成副研究员带领博士研究生李宁针对EBNA1/DNA复合物晶体结构(EBV nuclear antigen 1,EBNA1,EBV核抗原1)与Lieberman教授开展药物设计、分子细胞生物学及病毒学研究。EBNA1是一种EBV编码的DNA结合蛋白,它表达于所有与EBV相关类型的肿瘤细胞内,是病毒潜伏期DNA复制、游离基因维持和永生化初级B淋巴细胞所必不可少的。这项研究不仅首次发现一类新型的小分子能够通过抑制EBNA1结合DNA的功能进而抑制EBV复制。同时,它也证明了EBNA1可以作为治疗EBV潜伏感染的理想靶标,为将来抗疱疹病毒的药物发现研究提供了一条切实可行之路。
该研究标志着上海药物研究所已经在预防和治疗EBV潜伏感染所诱导的恶性肿瘤方面迈出了关键的一步,并且该研究为开发出能够阻止EBV进入潜伏期或打破潜伏期维持的药物奠定了基础。其次,该成果为目前药物设计研究的难点(针对蛋白质/DNA或蛋白质/蛋白质复合物的药物设计)提供了一个可以借鉴的研究策略,也将为其它抗病毒药物的研究提供一条切实可行的思路。这项研究将极大地促进治疗EBV病毒潜伏感染的抗病毒药物的发现。最后,该研究也表明,实验科学与理论科学的有效整合,将极大地促进药物发现研究。
该研究项目得到了国家科技部、自然科学基金委、上海市科委、新药研究国家重点实验室开放课题的资助。
请点击此处下载原文
Discovery of Selective Inhibitors Against EBNA1 via High Throughput In Silico
Virtual Screening
Ning Li 1, Scott Thompson 2, David C. Schultz 2, Weiliang Zhu 1, Hualiang Jiang 1,
Cheng Luo 1, Paul M. Lieberman 2
1 Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,
2 The Wistar Institute, Philadelphia, Pennsylvania, United States of America
Background
Epstein-Barr Virus (EBV) latent infection is associated with several human malignancies and is a causal agent of lymphoproliferative diseases during immunosuppression. While inhibitors of herpesvirus DNA polymerases, like gancyclovir, reduce EBV lytic cycle infection, these treatments have limited efficacy for treating latent infection. EBNA1 is an EBV-encoded DNA-binding protein required for viral genome maintenance during latent infection.
Methodology
Here, we report the identification of a new class of small molecules that inhibit EBNA1 DNA binding activity. These compounds were identified by virtual screening of 90,000 low molecular mass compounds using computational docking programs with the solved crystal structure of EBNA1. Four structurally related compounds were found to inhibit EBNA1-DNA binding in biochemical assays with purified EBNA1 protein. Compounds had a range of 20–100 µM inhibition of EBNA1 in fluorescence polarization assays and were further validated for inhibition using electrophoresis mobility shift assays. These compounds exhibited no significant inhibition of an unrelated DNA binding protein. Three of these compounds inhibited EBNA1 transcription activation function in cell-based assays and reduced EBV genome copy number when incubated with a Burkitt lymphoma cell line.
Conclusions
These experiments provide a proof-of-principle that virtual screening can be used to identify specific inhibitors of EBNA1 that may have potential for treatment of EBV latent infection.