丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Gene Editing in One‐Cell Embryos by Zinc‐Finger and TAL Nucleases

互联网

1532
  • Abstract
  • Table of Contents
  • Materials
  • Figures
  • Literature Cited

Abstract

 

Gene targeting by sequence?specific nucleases in one?cell embryos provides an expedited mutagenesis approach in rodents. This technology has been recently established to create knockout and knockin mutants through sequence deletion or sequence insertion. This article provides protocols for the preparation and microinjection of nuclease mRNA and targeting vector DNA into fertilized mouse eggs. Furthermore, we provide guidelines for genotyping the desired mouse mutants. Curr. Protoc. Mouse Biol. 2:347?364 © 2012 by John Wiley & Sons, Inc.

Keywords: pronucleus injection; gene targeting; mouse mutant; zinc?finger nuclease; TAL nuclease; homologous recombination

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Preparation of T10E0.1 Buffer for Pronucleus Injection
  • Basic Protocol 2: Preparation of Nuclease mRNA
  • Basic Protocol 3: Preparation of Gene‐Targeting Vector and Oligonucleotide DNA
  • Basic Protocol 4: Preparation of mRNA/DNA Aliquots for Embryo Injection
  • Basic Protocol 5: Microinjection of One‐Cell Embryos
  • Basic Protocol 6: Genotyping of Nuclease‐Induced Mutants
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Preparation of T10E0.1 Buffer for Pronucleus Injection

  Materials
  • Trizma base (Sigma, cat. no. T6791)
  • Trizma hydrochloride (Sigma, cat. no. T6666)
  • H 2 O, embryo‐tested (Sigma, cat. no. W1503)
  • Disodium EDTA (Sigma, cat. no. E4884)
  • 50‐ml conical polypropylene centrifuge tubes (BD Falcon)
  • pH test strips, pH 4.5‐ 10
  • Syringe filter unit Millex GV, 0.22 µm (Millipore, cat. no. SLGV033RS)

Basic Protocol 2: Preparation of Nuclease mRNA

  Materials
  • Plasmid DNAs containing nuclease coding regions (e.g., ZFN coding pVax plasmids from Sigma‐Aldrich)
  • Restriction enzyme that cuts once downstream of the nuclease stop codon of the plasmid (pVax plasmids can be linearized by Xba I digestion)
  • 0.8% agarose gel (Voytas, )
  • Spin‐column gel‐extraction kit (Qiagen)
  • 3 M sodium acetate, pH 5.2
  • 70% and 100% ethanol
  • RNase‐free H 2 O
  • Message Machine T7 Ultra kit (Ambion, cat. no. AM1345)
  • MegaClear kit (Ambion, cat. no. AM1908)
  • T 10 E 0.1 injection buffer ( protocol 1 )
  • 10% (w/v) sodium dodecyl sulfate (SDS)
  • NorthernMax‐Gly kit (Ambion, cat. no. AM1946)
  • Millenium RNA size marker (Ambion, cat. no. AM7150)
  • 50° and 65°C water baths or heat block
  • Additional reagents and equipment for agarose gel electrophoresis (Voytas, ) and spectrophotometric determination of DNA and RNA (Gallagher, )

Basic Protocol 3: Preparation of Gene‐Targeting Vector and Oligonucleotide DNA

  Materials
  • Plasmid preparation of gene‐targeting vector, or synthetic DNA oligonucleotide
  • 3 M sodium acetate, pH 5.2
  • 100% ethanol
  • 70% ethanol (prepared with embryo‐tested H 2 O)
  • Water, embryo tested (Sigma, cat. no. W1503)
  • T 10 E 1 injection buffer (see recipe)
  • Oligonucleotide pellet (molecules of ∼140 nucleotide length; Metabion; http://www.metabion.com/)
  • MF Membrane Filter 0.025 µm VSWP (Millipore, cat no. VSWP02500)
  • 10‐cm tissue culture dish
  • Additional reagents and equipment for spectrophotometric determination of DNA (Gallagher, )

Basic Protocol 4: Preparation of mRNA/DNA Aliquots for Embryo Injection

  Materials
  • Purified nuclease mRNAs in injection buffer ( protocol 2 , step 26)
  • T 10 E 0.1 injection buffer ( protocol 1 )
  • Purified vector DNA in injection buffer ( protocol 3 )
  • New bag of 1.5‐ml microcentrifuge tubes (Eppendorf)

Basic Protocol 5: Microinjection of One‐Cell Embryos

  Materials
  • 15 female mice for superovulation [FVB inbred or (C57BL/6× DBA/2)F 1 hybrid strain, 4 weeks of age]
  • PMSG (pregnant mare serum gonadotropin; e.g., Sigma, cat. no. G4877); prepare a stock solution of 50 IU/ml with sterile H 2 O and store in aliquots at −20°C up to 2 months
  • hCG (human chorionic gonadotropin; e.g., Sigma, cat. no. CG5); prepare a stock solution of 50 IU/ml with sterile H 2 O and store in aliquots at −20°C up to 2 months
  • 15 male mice for mating
  • M2 medium (embryo tested, Sigma, cat. no. M7167)
  • Hyaluronidase (type IV‐S from bovine testes, embryo tested, Sigma, cat. no. H4272); prepare a stock solution of 10 mg/ml in M2 medium, filter sterilize, and store up to 6 months at −20°C in single‐use aliquots of 50 µl
  • Injection solution ( protocol 4 )
  • Pseudopregnant female mice (see annotation to step 25)
  • 6‐cm bacteriological petri dishes
  • Inverted stereomicroscope [e.g., Leica DMI3000B with 40× 0.55 Corr Ph2 objective, phase contrast, differential interference contrast (DIC), and polarizer]
  • Fine forceps
  • Transfer pipets (e.g., HB 1.80 × 1.20, L=160 mm, 125‐134 µm, BW=45°, BL=10 mm; BioMedical Instruments, http://biomedical‐instruments.de)
  • Gel loading pipet tips (e.g., Eppendorf Microloader tips)
  • Pronucleus injection capillaries (e.g., BM100F‐10, end fire‐polished, PI‐1.6, Barnow; BioMedical Instruments, http://bio‐medical.com/; injection capillaries must be of the “filament” type to enable their filling with fluid)
  • Microinjector device for application of positive and negative pressure (e.g., Eppendorf FemtoJet)
  • Depression (concavity) slides (e.g., Electron Microscopy Sciences, cat. no. 71878‐01)
  • Holding pipets (e.g., BM100T‐15, broad, ID = 20‐25 µm, straight; BioMedical Instruments)
  • Additional reagents and equipment for sacrifice of mice (Donovan and Brown, ) and embryo transfer (Nagy et al., )

Basic Protocol 6: Genotyping of Nuclease‐Induced Mutants

  Materials
  • PCR primers (to amplify a region of ∼250 bp; sequence depends on target region)
  • PCR amplification reagents (e.g., 5‐Prime MasterMix, 5 Prime, cat. no. 2200100; also see Kramer and Coen, )
  • Tail DNA (for a protocol, see Nagy et al., ) from founder pups ( protocol 5 ) and a wild‐type control
  • Restriction enzymes (again, depends on target region)
  • Additional reagents and equipment for PCR (Kramer and Coen, ), agarose gel electrophoresis (Voytas, ), DNA sequencing (Shendure et al., ), and Southern blotting (Brown, )
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   Figure 1. Principle of gene editing using sequence‐specific nucleases. Sequence‐specific nucleases are composed of a domain that binds to the target gene via zinc‐finger or TAL effector‐based DNA recognition motifs. The DNA binding part is fused to the nonspecific nuclease domain of Fok I. A double‐strand break is generated only by a dimer of nuclease domains each targeting one DNA strand. Two fusion proteins, one recognizing a sequence upstream of the target site and the other recognizing a downstream sequence segment, cooperate as a functional gene‐specific nuclease. The presence of a double‐strand break activates the repair mechanisms of homologous recombination (HR) and nonhomologous end ligation (NHEJ). Through HR, a preplanned genetic modification carried within a gene targeting vector is copied into the target gene. In the absence of a vector as repair template, the DSB is closed by NHEJ. This frequently leads to the loss of a variable number of nucleotides and generates knockout alleles by frameshift mutations.
    View Image
  •   Figure 2. Gene editing in one‐cell embryos. Fertilized oocytes are collected from wild‐type mice and microinjected with mRNA for a sequence‐specific nuclease pair (Nuc1/2) that causes a double‐strand break (DSB) within the paternal or maternal copy of the target gene. (A ) Generation of knockout mice. The closure of DSBs by nonhomologous end joining (NHEJ) repair leads to the loss of nucleotides at the DSB site such that many alleles exhibit frameshift mutations, leading to a functional knockout (KO). (B ) Generation of knockin mice. Fertilized oocytes are coinjected with mRNA for a sequence‐specific nuclease (Nuc1/2) and DNA of gene targeting vector. The nuclease induces a double‐strand break (DSB) at the target site that stimulates homologous recombination (HR) of the vector with the target locus, resulting into a knockin (KI) allele. Manipulated embryos are transferred into pseudopregnant females to obtain offspring. These mice harbor heterozygous KO alleles (A) at a frequency of up to 75% or knockin alleles at a frequency to 5% (B).
    View Image
  •   Figure 3. In vitro transcription of nuclease mRNA. Denaturing gel electrophoresis of three in vitro‐transcribed RNAs (A, B, C ) before and after polyadenylation. Control samples C 1 taken upon the in vitro transcription () of a ZFN RNA A (A1 , expected size: 1100 nt), a ZFN RNA B (B1, expected size: 1200 nt), and a Venus coding RNA C (C1 , expected size: 1500 nt). The equivalent control samples C 2 taken after RNA polyadenylation and purification exhibit a size shift of ∼500 nt, indicating successful polyadenylation. M, Millennium RNA size standard, x 1000 nucleotides.
    View Image
  •   Figure 4. Embryo microinjection for the delivery of mRNA and targeting vector. The injection capillary is loaded with a mixture of nuclease mRNA and targeting vector DNA. (A ) In the first step of injection, a volume of the RNA/DNA mix is injected into the larger pronucleus to deliver the targeting vector to the paternal genome. (B ) During withdrawal of the injection needle, a second RNA/DNA volume is delivered into the cytoplasm for the immediate translation of nuclease mRNA.
    View Image
  •   Figure 5. The timing of nuclease‐induced gene editing determines the genetic constitution of mutant founders. During the microinjection of nuclease mRNA, the male genome is in the process of replication. (A ) In the case where a nuclease (Nuc) processes the single copy of the target gene before replication, the genetic modification becomes transferred into all descending cells, resulting in a fully heterozygous mutant. Such founders are expected to transmit the mutant allele to 50% of their progeny. (B ) If the nuclease (Nuc) acts only on one chromatid after replication of the target gene, only half of the body cells harbor the mutation in a heterozygous state, resulting in a mosaic mutant. Mosaic founders are expected to transmit the mutant allele to 25% of their progeny.
    View Image

Videos

Literature Cited

Literature Cited
   Boch, J. and Bonas, U. 2010. Xanthomonas AvrBs3 family‐type III effectors: Discovery and function. Ann. Rev. Phytopathol. 48:419–436.
   Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., and Bonas, U. 2009. Breaking the code of DNA binding specificity of TAL‐type III effectors. Science 326:1509‐1512.
   Brown, T. 2004. Southern blotting. Curr. Protoc. Mol. Biol. 68:2.9.1‐2.9.20.
   Capecchi, M.R. 2005. Gene targeting in mice: Functional analysis of the mammalian genome for the twenty‐first century. Nat. Rev. Genet. 6:507‐512.
   Carbery, I.D., Ji, D., Harrington, A., Brown, V., Weinstein, E.J., Liaw, L., and Cui, X. 2010. Targeted genome modification in mice using zinc‐finger nucleases. Genetics 186:451‐459.
   Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J., and Voytas, D.F. 2011. Efficient design and assembly of custom TALEN and other TAL effector‐based constructs for DNA targeting. Nucleic Acids Res. 39:e82.
   Chen, F., Pruett‐Miller, S.M., Huang, Y., Gjoka, M., Duda, K., Taunton, J., Collingwood, T.N., Frodin, M., and Davis, G.D. 2011. High‐frequency genome editing using ssDNA oligonucleotides with zinc‐finger nucleases. Nat. Methods 8:753‐755.
   Christian, M., Cermak, T., Doyle, E.L., Schmidt, C., Zhang, F., Hummel, A., Bogdanove, A.J., and Voytas, D.F. 2010. Targeting DNA double‐strand breaks with TAL effector nucleases. Genetics 186:757‐761.
   Cui, X., Ji, D., Fisher, D.A., Wu, Y., Briner, D.M., and Weinstein, E.J. 2011. Targeted integration in rat and mouse embryos with zinc‐finger nucleases. Nat. Biotechnol. 29:64‐67.
   Donovan, J. and Brown, P. 2006. Euthanasia. Curr. Protoc. Immunol. 73:1.8.1‐1.8.4.
   Doyon, Y., McCammon, J.M., Miller, J.C., Faraji, F., Ngo, C., Katibah, G.E., Amora, R., Hocking, T.D., Zhang, L., and Rebar, E.J. 2008. Heritable targeted gene disruption in zebrafish using designed zinc‐finger nucleases. Nat. Biotechnol. 26:702‐708.
   Flisikowska, T., Thorey, I.S., Offner, S., Ros, F., Lifke, V., Zeitler, B., Rottmann, O., Vincent, A., Zhang, L., Jenkins, S., Niersbach, H., Kind, A.J., Gregory, P.D., Schnieke, A.E., and Platzer, J. 2011. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. PLoS One 6:e21045.
   Gallagher, S. R. 2011. Quantitation of DNA and RNA with absorption and fluorescence spectroscopy. Curr. Protoc. Mol. Biol. 93:A.3D.1‐A.3D.14.
   Geurts, A. M., Cost, G. J., Freyvert, Y., Zeitler, B., Miller, J. C., Choi, V. M., Jenkins, S. S., Wood, A., Cui, X., Meng, X., Vincent, A., Lam, S., Michalkiewicz, M., Schilling, R., Foeckler, J., Kalloway, S., Weiler, H., Ménoret, S., Anegon, I., Davis, G.D., Zhang, L., Rebar, E.J., Gregory, P.D., Urnov, F.D., Jacob, H.J., and Buelow, R. 2009. Knockout rats via embryo microinjection of zinc‐finger nucleases. Science 325:433.
   Hasty, P., Abuin, A., and Bradley, A. 2000. Gene targeting, principles, and practice in mammalian cells. In Gene Targeting: A Practical Approach (A.L. Joyner, ed.) pp. 1‐35. Oxford University Press, Oxford.
   Huang, P., Xiao, A., Zhou, M., Zhu, Z., Lin, S., and Zhang, B. 2011. Heritable gene targeting in zebrafish using customized TALENs. Nat. Biotechnol. 29:699‐700.
   Kramer, M.F. and Coen, D.M. 2001. Enzymatic amplification of DNA by PCR: Standard procedures and optimization. Curr. Protoc. Mol. Biol. 56:15.1.1‐15.1.14.
   Maeder, M. L., Thibodeau‐Beganny, S., Osiak, A., Wright, D. A., Anthony, R. M., Eichtinger, M., Jiang, T., Foley, J. E., Winfrey, R. J., Townsend, J. A., Unger‐Wallace, E., Sander, J.D., Müller‐Lerch, F., Fu, F., Pearlberg, J., Göbel, C., Dassie, J.P., Pruett‐Miller, S.M., Porteus, M.H., Sgroi, D.C., Iafrate, A.J., Dobbs, D., McCray, P.B. Jr., Cathomen, T., Voytas, D.F., and Joung, J.K. 2008. Rapid “open‐source” engineering of customized zinc‐finger nucleases for highly efficient gene modification. Mol. Cell 31:294‐301.
   Maeder, M.L., Thibodeau‐Beganny, S., Sander, J.D., Voytas, D.F., and Joung, J.K. 2009. Oligomerized pool engineering (OPEN): An “open‐source” protocol for making customized zinc‐finger arrays. Nat. Protoc. 4:1471‐1501.
   Mak, A.N.‐S., Bradley, P., Cernadas, R.A., Bogdanove, A.J., and Stoddard, B.L. 2012. The crystal structure of TAL effector PthXo1 bound to its DNA target. Science 335:716‐719.
   Meyer, M., de Angelis, M.H., Wurst, W., and Kuhn, R. 2010. Gene targeting by homologous recombination in mouse zygotes mediated by zinc‐finger nucleases. Proc. Natl. Acad. Sci. U.S.A. 107:15022‐15026.
   Meyer, M., Ortiz, O., de Angelis, M.H., Wurst, W., and Kühn, R. 2012. Modeling disease mutations by gene targeting in one‐cell mouse embryos. Proc. Natl. Acad. Sci. U.S.A. 109:9354‐9359.
   Miller, J.C., Tan, S., Qiao, G., Barlow, K.A., Wang, J., Xia, D.F., Meng, X., Paschon, D.E., Leung, E., Hinkley, S.J., Dulay, G.P., Hua, K.L., Ankoudinova, I., Cost, G.J., Urnov, F.D., Zhang, H.S., Holmes, M.C., Zhang, L., Gregory, P.D., Rebar, E.J. 2011. A TALE nuclease architecture for efficient genome editing. Nature Biotechnol. 29:143‐148.
   Nagy, A., Gertsenstein, M., Vintersten, K., and Behringer, R. 2003. Manipulating the Mouse Embryo. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
   Palmiter, R.D., and Brinster, R.L. 1986. Germ‐line transformation of mice. Annu. Rev. Genet. 20:465‐499.
   Porteus, M.H. and Baltimore, D. 2003. Chimeric nucleases stimulate gene targeting in human cells. Science 300:763.
   Porteus, M.H. and Carroll, D. 2005. Gene targeting using zinc finger nucleases. Nat. Biotechnol. 23:967‐973.
   Reyon, D., Tsai, S.Q., Khayter, C., Foden, J.A., Sander, J.D., and Joung, J.K. 2012. FLASH assembly of TALENs for high‐throughput genome editing. Nat. Biotechnol. 30:460‐465.
   Sander, J.D., Cade, L., Khayter, C., Reyon, D., Peterson, R.T., Joung, J.K., and Yeh, J.‐R. J. 2011. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat. Biotechnol. 29:697‐698.
   Shendure, J.A., Porreca, G.J., Church, G.M., Gardner, A.F., Hendrickson, C.L., Kieleczawa, J., and Slatko, B.E. 2011. Overview of DNA sequencing strategies. Curr. Protoc. Mol. Biol. 96:7.1.1‐7.1.23.
   Tesson, L., Usal, C., Ménoret, S., Leung, E., Niles, B.J., Remy, S., Santiago, Y., Vincent, A.I., Meng, X., and Zhang, L. 2011. Knockout rats generated by embryo microinjection of TALENs. Nat. Biotechnol. 29:695‐696.
   Urnov, F.D., Miller, J.C., Lee, Y.L., Beausejour, C.M., Rock, J.M., Augustus, S., Jamieson, A.C., Porteus, M.H., Gregory, P.D., and Holmes, M.C. 2005. Highly efficient endogenous human gene correction using designed zinc‐finger nucleases. Nature 435:646‐651.
   Urnov, F.D., Rebar, E.J., Holmes, M.C., Zhang, H.S., and Gregory, P.D. 2010. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 11:636‐646.
   Voytas, D. 2000. Agarose gel electrophoresis. Curr. Protoc. Mol. Biol. 51:2.5A.1‐2.5A.9.
   Wefers, B., Wurst, W., and Kühn, R. 2011. Design and generation of gene‐targeting vectors. Curr. Protoc. Mouse Biol. 1:199‐211.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library
 
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序