丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Resources for Small Regulatory RNAs

互联网

1216
  • Abstract
  • Table of Contents
  • Figures
  • Literature Cited

Abstract

 

In the past fifteen years, new classes of regulatory RNAs have been discovered, previously hidden in the transcriptome mostly due to their small size. These small regulatory RNAs include small interfering RNAs (siRNAs), microRNAs (miRNAs), and Piwi?interacting RNAs (piRNAs). Numerous databases have been developed to store information about these small regulatory RNAs, and many tools have been developed to work with the data. This overview introduces the reader to the many resources available for working with small regulatory RNAs. Curr. Protoc. Mol. Biol. 87:19.8.1?19.8.13. © 2009 by John Wiley & Sons, Inc.

Keywords: miRNA; piRNA; siRNA; regulatory RNAs

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Exogenous Small RNAs: siRNAs and shRNAs
  • MicroRNA Genes
  • Piwi‐Interacting RNAs
  • General Resources that Include Small Regulatory RNAs
  • Concluding Remarks
  • Acknowledgments
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   Figure 19.8.1 Partial results page from searching the NCBI Probe Database. To get to this screen, enter the terms egr1 human siRNA into the Entrez Probe Database search box. This will result in a list of probes containing these search terms. Click on the first entry (Pr000209.1) and information about that probe is displayed. This figure shows the details of an entry and includes information including the Sequence, Experimental Results, References, Submission Details, and other information about the probe.
    View Image
  •   Figure 19.8.2 Output of Experimental Results from searching the Probe Database. This figure shows the details of the experimental results for Probe 000209.1. Click on the link below the publication information in the Results section to view the page in this figure.
    View Image
  •   Figure 19.8.3 A screen shot from the UCSC Genome Browser (human hg18 assembly) showing some representative small regulatory RNA features in the region chr15:60,330,001‐60,930,000. The “piRNA clusters” track was generated by clicking on “add custom tracks” and using data from Aravin et al. () after converting genome coordinates from the hg17 assembly. See the accompanying text for details of BED browser files and genome coordinate conversion. Several gene sets (RefSeq and Ensembl) of primarily protein‐coding genes are shown. Note that the miRNA miR‐90 appears in the Ensembl track, as well as the RNA Genes and snoRNABase/miRBase tracks. The EvoFold track indicates predicted functional RNA structures, and the TargetScan track (displayed in dense format) shows predicted miRNA regulatory target sites (in the TLN2 3′ UTR). The highly configurable Conservation track shows the range of conservation across this genome region. Note that miR‐190 and exons of the protein‐coding gene TLN2 are conserved to zebrafish, whereas many other regions tend to be conserved in placental mammals (including armadillo) but not in other vertebrates.
    View Image

Videos

Literature Cited

Literature Cited
   Ambros, V., Bartel, B., Bartel, D.P., Burge, C.B., Carrington, J.C., Chen, X., Dreyfuss, G., Eddy, S.R., Griffiths‐Jones, S., Marshall, M., Matzke, M., Ruvkun, G., and Tuschl, T. 2003. A uniform system for microRNA annotation. RNA 9:277‐279.
   Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos‐Quintana, M., Landgraf, P., Iovino, N., Morris, P., Brownstein, M.J., Kuramochi‐Miyagawa, S., Nakano, T., Chien, M., Russo, J.J., Ju, J., Sheridan, R., Sander, C., Zavolan, M., and Tuschl, T. 2006. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203‐207.
   Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux, P., Rudnev, D., Evangelista, C., Kim, I.F., Soboleva, A., Tomashevsky, M., Marshall, K.A., Phillippy, K.H., Sherman, P.M., Muertter, R.N., and Edgar, R. 2009. NCBI GEO: Archive for high‐throughput functional genomic data. Nucleic Acids Res. 37:D885‐D890.
   Bartel, D.P. 2004. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116:281‐297.
   Bartel, D.P. 2009. MicroRNAs: Target recognition and regulatory functions. Cell 136:215‐233.
   Betel, D., Sheridan, R., Marks, D.S., and Sander, C. 2007. Computational analysis of mouse piRNA sequence and biogenesis. PLoS Comput. Biol. 3:e222.
   Betel, D., Wilson, M., Gabow, A., Marks, D.S., and Sander, C. 2008. The microRNA.org resource: Targets and expression. Nucleic Acids Res. 36:D149‐D153.
   Birmingham, A., Anderson, E., Sullivan, K., Reynolds, A., Boese, Q., Leake, D., Karpilow, J., and Khvorova, A. 2007. A protocol for designing siRNAs with high functionality and specificity. Nat. Protoc. 2:2068‐2078.
   Brennecke, J., Aravin, A.A., Stark, A., Dus, M., Kellis, M., Sachidanandam, R., and Hannon, G.J. 2007. Discrete small RNA‐generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089‐1103.
   Brummelkamp, T.R., Bernards, R., and Agami, R. 2002. A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550‐553.
   Chan, P.P. and Lowe, T.M. 2009. GtRNAdb: A database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res. 37:D93‐D97.
   Dai, X. and Zhao, P.X. 2008. pssRNAMiner: A plant short small RNA regulatory cascade analysis server. Nucleic Acids Res. 36:W114‐W118.
   Ding, Y., Chan, C.Y., and Lawrence, C.E. 2004. Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res. 32:W135‐W141.
   Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. 2001a. Duplexes of 21‐nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494‐498.
   Elbashir, S.M., Lendeckel, W., and Tuschl, T. 2001b. RNA interference is mediated by 21‐ and 22‐nucleotide RNAs. Genes Dev. 15:188‐200.
   Eyre, T.A., Ducluzeau, F., Sneddon, T.P., Povey, S., Bruford, E.A., and Lush, M.J. 2006. The HUGO Gene Nomenclature Database, 2006 updates. Nucleic Acids Res. 34:D319‐D321.
   Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. 2009. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19:92‐105.
   Gaidatzis, D., van Nimwegen, E., Hausser, J., and Zavolan, M. 2007. Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8:69.
   Gardner, P.P., Daub, J., Tate, J.G., Nawrocki, E.P., Kolbe, D.L., Lindgreen, S., Wilkinson, A.C., Finn, R.D., Griffiths‐Jones, S., Eddy, S.R., and Bateman, A. 2009. Rfam: Updates to the RNA families database. Nucleic Acids Res. 37:D136‐D140.
   Glazov, E.A., Cottee, P.A., Barris, W.C., Moore, R.J., Dalrymple, B.P., and Tizard, M.L. 2008. A microRNA catalog of the developing chicken embryo identified by a deep sequencing approach. Genome Res. 18:957‐964.
   Griffiths‐Jones, S., Grocock, R.J., van Dongen, S., Bateman, A., and Enright, A.J. 2006. miRBase: MicroRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34:D140‐D144.
   Griffiths‐Jones, S., Saini, H.K., van Dongen, S., and Enright, A.J. 2008. miRBase: Tools for microRNA genomics. Nucleic Acids Res. 36:D154‐D158.
   Grimson, A., Srivastava, M., Fahey, B., Woodcroft, B.J., Chiang, H.R., King, N., Degnan, B.M., Rokhsar, D.S., and Bartel, D.P. 2008. Early origins and evolution of microRNAs and Piwi‐interacting RNAs in animals. Nature 455:1193‐1197.
   Gruber, A.R., Lorenz, R., Bernhart, S.H., Neubock, R., and Hofacker, I.L. 2008. The Vienna RNA websuite. Nucleic Acids Res. 36:W70‐W74.
   Hammell, M., Long, D., Zhang, L., Lee, A., Carmack, C.S., Han, M., Ding, Y., and Ambros, V. 2008. mirWIP: MicroRNA target prediction based on microRNA‐containing ribonucleoprotein‐enriched transcripts. Nat. Methods 5:813‐819.
   Huang, H.Y., Chang, H.Y., Chou, C.H., Tseng, C.P., Ho, S.Y., Yang, C.D., Ju, Y.W., and Huang, H.D. 2009. sRNAMap: Genomic maps for small non‐coding RNAs, their regulators and their targets in microbial genomes. Nucleic Acids Res. 37:D150‐D154.
   Hubbard, T.J., Aken, B.L., Ayling, S., Ballester, B., Beal, K., Bragin, E., Brent, S., Chen, Y., Clapham, P., Clarke, L., Coates, G., Fairley, S., Fitzgerald, S., Fernandez‐Banet, J., Gordon, L., Graf, S., Haider, S., Hammond, M., Holland, R., Howe, K., Jenkinson, A., Johnson, N., Kahari, A., Keefe, D., Keenan, S., Kinsella, R., Kokocinski, F., Kulesha, E., Lawson, D., Longden, I., Megy, K., Meidl, P., Overduin, B., Parker, A., Pritchard, B., Rios, D., Schuster, M., Slater, G., Smedley, D., Spooner, W., Spudich, G., Trevanion, S., Vilella, A., Vogel, J., White, S., Wilder, S., Zadissa, A., Birney, E., Cunningham, F., Curwen, V., Durbin, R., Fernandez‐Suarez, X.M., Herrero, J., Kasprzyk, A., Proctor, G., Smith, J., Searle, S., and Flicek, P. 2009. Ensembl 2009. Nucleic Acids Res. 37:D690‐D697.
   Jiang, Q., Wang, Y., Hao, Y., Juan, L., Teng, M., Zhang, X., Li, M., Wang, G., and Liu, Y. 2009. miR2Disease: A manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 37:D98‐D104.
   Kertesz, M., Iovino, N., Unnerstall, U., Gaul, U., and Segal, E. 2007. The role of site accessibility in microRNA target recognition. Nat. Genet. 39:1278‐1284.
   Kim, V.N. 2006. Small RNAs just got bigger: Piwi‐interacting RNAs (piRNAs) in mammalian testes. Genes Dev. 20:1993‐1997.
   Kim, V.N., Han, J., and Siomi, M.C. 2009. Biogenesis of small RNAs in animals. Nat. Rev. Mol. Cell Biol. 10:126‐139.
   Klattenhoff, C. and Theurkauf, W. 2008. Biogenesis and germline functions of piRNAs. Development 135:3‐9.
   Kong, W., Zhao, J.J., He, L., and Cheng, J.Q. 2009. Strategies for profiling microRNA expression. J. Cell Physiol. 218:22‐25.
   Kuhn, R.M., Karolchik, D., Zweig, A.S., Wang, T., Smith, K.E., Rosenbloom, K.R., Rhead, B., Raney, B.J., Pohl, A., Pheasant, M., Meyer, L., Hsu, F., Hinrichs, A.S., Harte, R.A., Giardine, B., Fujita, P., Diekhans, M., Dreszer, T., Clawson, H., Barber, G.P., Haussler, D., and Kent, W.J. 2009. The UCSC Genome Browser Database: Update 2009. Nucleic Acids Res. 37:D755‐D761.
   Lall, S., Grun, D., Krek, A., Chen, K., Wang, Y.L., Dewey, C.N., Sood, P., Colombo, T., Bray, N., Macmenamin, P., Kao, H.L., Gunsalus, K.C., Pachter, L., Piano, F., and Rajewsky, N. 2006. A genome‐wide map of conserved microRNA targets in C. elegans. Curr. Biol. 16:460‐471.
   Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. 2009. Ultrafast and memory‐efficient alignment of short DNA sequences to the human genome. Genome Biol. 10:R25.
   Li, H., Ruan, J., and Durbin, R. 2008. Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res. 18:1851‐1858.
   Lu, Z.J. and Mathews, D.H. 2008. OligoWalk: An online siRNA design tool utilizing hybridization thermodynamics. Nucleic Acids Res. 36:W104‐W108.
   Markham, N.R. and Zuker, M. 2008. UNAFold: Software for nucleic acid folding and hybridization. Methods Mol. Biol. 453:3‐31.
   Martinez, N.J., Ow, M.C., Reece‐Hoyes, J.S., Barrasa, M.I., Ambros, V.R., and Walhout, A.J. 2008. Genome‐scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity. Genome Res. 18:2005‐2015.
   Matera, A.G., Terns, R.M., and Terns, M.P. 2007. Non‐coding RNAs: Lessons from the small nuclear and small nucleolar RNAs. Nat. Rev. Mol. Cell Biol. 8:209‐220.
   Matveeva, O., Nechipurenko, Y., Rossi, L., Moore, B., Saetrom, P., Ogurtsov, A.Y., Atkins, J.F., and Shabalina, S.A. 2007. Comparison of approaches for rational siRNA design leading to a new efficient and transparent method. Nucleic Acids Res. 35:e63.
   Miranda, K.C., Huynh, T., Tay, Y., Ang, Y.S., Tam, W.L., Thomson, A.M., Lim, B., and Rigoutsos, I. 2006. A pattern‐based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell 126:1203‐1217.
   Moffat, J., Grueneberg, D.A., Yang, X., Kim, S.Y., Kloepfer, A.M., Hinkle, G., Piqani, B., Eisenhaure, T.M., Luo, B., Grenier, J.K., Carpenter, A.E., Foo, S.Y., Stewart, S.A., Stockwell, B.R., Hacohen, N., Hahn, W.C., Lander, E.S., Sabatini, D.M., and Root, D.E. 2006. A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high‐content screen. Cell 124:1283‐1298.
   Morin, R.D., O'Connor, M.D., Griffith, M., Kuchenbauer, F., Delaney, A., Prabhu, A.L., Zhao, Y., McDonald, H., Zeng, T., Hirst, M., Eaves, C.J., and Marra, M.A. 2008. Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res. 18:610‐621.
   Okamura, K. and Lai, E.C. 2008. Endogenous small interfering RNAs in animals. Nat. Rev. Mol. Cell Biol. 9:673‐678.
   Olson, A., Sheth, N., Lee, J.S., Hannon, G., and Sachidanandam, R. 2006. RNAi Codex: A portal/database for short‐hairpin RNA (shRNA) gene‐silencing constructs. Nucleic Acids Res. 34:D153‐D157.
   Ozsolak, F., Poling, L.L., Wang, Z., Liu, H., Liu, X.S., Roeder, R.G., Zhang, X., Song, J.S., and Fisher, D.E. 2008. Chromatin structure analyses identify miRNA promoters. Genes Dev. 22:3172‐3183.
   Pang, K.C., Stephen, S., Dinger, M.E., Engstrom, P.G., Lenhard, B., and Mattick, J.S. 2007. RNAdb 2.0‐an expanded database of mammalian non‐coding RNAs. Nucleic Acids Res. 35:D178‐D182.
   Papadopoulos, G.L., Reczko, M., Simossis, V.A., Sethupathy, P., and Hatzigeorgiou, A.G. 2009. The database of experimentally supported targets: A functional update of TarBase. Nucleic Acids Res. 37:D155‐D158.
   Park, Y.K., Park, S.M., Choi, Y.C., Lee, D., Won, M., and Kim, Y.J. 2008. AsiDesigner: Exon‐based siRNA design server considering alternative splicing. Nucleic Acids Res. 36:W97‐W103.
   Parkinson, H., Kapushesky, M., Kolesnikov, N., Rustici, G., Shojatalab, M., Abeygunawardena, N., Berube, H., Dylag, M., Emam, I., Farne, A., Holloway, E., Lukk, M., Malone, J., Mani, R., Pilicheva, E., Rayner, T.F., Rezwan, F., Sharma, A., Williams, E., Bradley, X.Z., Adamusiak, T., Brandizi, M., Burdett, T., Coulson, R., Krestyaninova, M., Kurnosov, P., Maguire, E., Neogi, S.G., Rocca‐Serra, P., Sansone, S.A., Sklyar, N., Zhao, M., Sarkans, U., and Brazma, A. 2009. ArrayExpress update–from an archive of functional genomics experiments to the atlas of gene expression. Nucleic Acids Res. 37:D868‐D872.
   Payer, B. and Lee, J.T. 2008. X chromosome dosage compensation: How mammals keep the balance. Annu. Rev. Genet. 42:733‐772.
   Pedersen, J.S., Bejerano, G., Siepel, A., Rosenbloom, K., Lindblad‐Toh, K., Lander, E.S., Kent, J., Miller, W., and Haussler, D. 2006. Identification and classification of conserved RNA secondary structures in the human genome. PLoS Comput. Biol. 2:e33.
   Pei, Y. and Tuschl, T. 2006. On the art of identifying effective and specific siRNAs. Nat. Methods 3:670‐676.
   Ren, Y., Gong, W., Zhou, H., Wang, Y., Xiao, F., and Li, T. 2009. siRecords: A database of mammalian RNAi experiments and efficacies. Nucleic Acids Res. 37:D146‐D149.
   Reynolds, A., Leake, D., Boese, Q., Scaringe, S., Marshall, W.S., and Khvorova, A. 2004. Rational siRNA design for RNA interference. Nat. Biotechnol. 22:326‐330.
   Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P. 2002. Prediction of plant microRNA targets. Cell 110:513‐520.
   Sai Lakshmi, S. and Agrawal, S. 2008. piRNABank: A web resource on classified and clustered Piwi‐interacting RNAs. Nucleic Acids Res. 36:D173‐177.
   Sayers, E.W., Barrett, T., Benson, D.A., Bryant, S.H., Canese, K., Chetvernin, V., Church, D.M., DiCuccio, M., Edgar, R., Federhen, S., Feolo, M., Geer, L.Y., Helmberg, W., Kapustin, Y., Landsman, D., Lipman, D.J., Madden, T.L., Maglott, D.R., Miller, V., Mizrachi, I., Ostell, J., Pruitt, K.D., Schuler, G.D., Sequeira, E., Sherry, S.T., Shumway, M., Sirotkin, K., Souvorov, A., Starchenko, G., Tatusova, T.A., Wagner, L., Yaschenko, E., and Ye, J. 2009. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 37:D5‐D15.
   Shendure, J. and Ji, H. 2008. Next‐generation DNA sequencing. Nat. Biotechnol. 26:1135‐1145.
   Stark, A., Brennecke, J., Bushati, N., Russell, R.B., and Cohen, S.M. 2005. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123:1133‐1146.
   Vazquez, F., Vaucheret, H., Rajagopalan, R., Lepers, C., Gasciolli, V., Mallory, A.C., Hilbert, J.L., Bartel, D.P., and Crete, P. 2004. Endogenous trans‐acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell 16:69‐79.
   Wang, Z., Gerstein, M., and Snyder, M. 2009. RNA‐Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57‐63.
   Xiao, F., Zuo, Z., Cai, G., Kang, S., Gao, X., and Li, T. 2009. miRecords: An integrated resource for microRNA‐target interactions. Nucleic Acids Res. 37:D105‐D110.
   Yin, J.Q., Zhao, R.C., and Morris, K.V. 2008. Profiling microRNA expression with microarrays. Trends Biotechnol. 26:70‐76.
   Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31:3406‐3415.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library
 
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序