Respiratory viral infections are a major cause of morbidity and mortality. Protection of the respiratory tract from pathogen infections, such as influenza virus, requires the orchestrated activation and trafficking of pulmonary dendritic cells (DCs) from the lung to the lymph node (LN) in order to ensure optimized T-cell responses. Gaining a better understanding of the cellular and molecular processes that protect the lung during infection is essential for future advances in vaccine strategies and treatments. Influenza viral infection in mice offers a very well-defined immunological system in which the underlying parameters regulating the generation of protective immunity can be elucidated. In this chapter, we review methods for quantitative analysis of DC and T-cell responses in a murine model infection of influenza. Antigen-specific tracking and quantitation of viral immune responses have been greatly facilitated by the advent of MHC tetramers and intracellular cytokine analysis, together with gentle isolation procedures for dendritic cells allowing detection of viral and endogenous antigens.