丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Assays for DNA Damage

互联网

1915
  • Abstract
  • Table of Contents
  • Materials
  • Figures
  • Literature Cited

Abstract

 

This unit describes several assays for detecting several kinds of DNA damage (strand breaks, internal crosslinking, DNA/protein crosslinks) and repair activity following exposure to genotoxic agents. The methods include single?cell electrophoresis (comet assay), filter eluting, K?SDS precipitation, and measurement of unscheduled DNA synthesis.

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Basic Protocol 1: Detection of Single‐stranded DNA Breaks Using the Single‐cell Microgel Electrophoresis Assay (Comet Assay) Under Alkaline Conditions
  • Alternate Protocol 1: Detection of Double‐stranded DNA Breaks Using the Single‐cell Microgel Electrophoresis Assay Under Neutral Conditions
  • Basic Protocol 2: Detection of DNA Damage with Filter Elution
  • Alternate Protocol 2: Detection of Interstrand Cross‐links
  • Alternate Protocol 3: Detection of DNA‐protein Cross‐links
  • Alternate Protocol 4: Detection of Oxidative DNA Base Modifications
  • Alternate Protocol 5: Detection of Double‐strand DNA Breakage
  • Alternate Protocol 6: Simultaneous Detection of DNA Double‐ and Single‐strand Breaks
  • Alternate Protocol 7: Alkaline Elution Using 96‐well Plates
  • Basic Protocol 3: Detection of DNA‐protein Cross‐links by K‐SDS Precipitation
  • Alternate Protocol 8: Using a 96‐well Plate to Determine DNA Concentrations for K‐sds Precipitations
  • Alternate Protocol 9: Using Slot Blotting to Determine DNA Amounts
  • Basic Protocol 4: Detection of DNA Repair Using the Unscheduled DNA Synthesis (UDS) Assay
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Detection of Single‐stranded DNA Breaks Using the Single‐cell Microgel Electrophoresis Assay (Comet Assay) Under Alkaline Conditions

  Materials
  • Cells of interest
  • Phosphate‐buffered saline (PBS; see recipe )
  • Test chemical
  • Normal‐melting‐point (NMP) agarose
  • Low‐melting‐point (LMP) agarose
  • Alkaline lysis solution, pH 10 (see recipe ), 4°C
  • Alkaline electrophoresis buffer (see recipe )
  • 400 mM Tris⋅Cl, pH 7.4 ( appendix 2A )
  • 20 µg/ml ethidium bromide (or other fluorescent DNA stain; e.g., propidium iodide, ethidium bromide, YOYO‐1, TOTO‐1)
  • Metal baking tray
  • Microscope slides, fully frosted
  • 24 × 50–mm no. 1 coverslips
  • 45°C water bath
  • 200‐µl pipet tips with 5 mm cut off the small end
  • Coplin jars or slide staining apparatus
  • Horizontal electrophoresis unit
  • Power supply capable of delivering 300 mA of current at 25 V
  • Fluorescence microscope with excitation and barrier filters appropriate for the selected DNA stain, and camera
  • Eyepiece micrometer
  • Digital calipers
  • Transparencies with mm2 grids
  • Image analysis software (optional)

Alternate Protocol 1: Detection of Double‐stranded DNA Breaks Using the Single‐cell Microgel Electrophoresis Assay Under Neutral Conditions

  • Neutral lysis solution, pH 8.3 (see recipe ), or alkaline lysis solution, pH 10 (see recipe )
  • 10 µg/ml RNase A in alkaline lysis solution (see recipe for the alkaline lysis solution; omit Triton X‐100 and adjust pH to 7)
  • 1 mg/ml proteinase K in alkaline lysis solution (see recipe for the alkaline lysis solution; omit Triton X‐100 and adjust pH to 7)
  • Neutral electrophoresis buffer: 300 mM sodium acetate/100 mM Tris⋅Cl, pH 8.5 (see appendix 2A for Tris⋅Cl)
  • 300 mM NaOH

Basic Protocol 2: Detection of DNA Damage with Filter Elution

  Materials
  • Cells of interest
  • [Methyl 3 H]thymidine (20 Ci/mmol) or [2‐14 C]thymidine (50 mCi/mmol) for radioactive determination or Hoechst 33258 (bis‐benzamide; for fluorometric determination)
  • Unlabeled thymidine
  • Appropriate growth medium for cells
  • Test compound
  • Phosphate‐buffered saline (PBS; see recipe ), ice‐cold
  • Cell lysis solution, pH 9.7 (see recipe )
  • Cell lysis solution (see recipe ) containing 0.5 mg/ml proteinase K
  • Alkaline elution solution, pH 12.3 (see recipe )
  • 1 N HCl
  • 0.4 N NaOH
  • Scintillation fluid (e.g., Ecolume, ICN Biomedicals) containing 0.7% (v/v) acetic acid
  • 0.2 M tetrasodium EDTA, pH 10 (pH adjusted with 1 N NaOH)
  • 1 M potassium dihydrogen phosphate
  • 17 mM KH 2 PO 4
  • 150 µM Hoechst 33258 stock solution
  • Tabletop centrifuge
  • 2.0‐µm polycarbonate filter (25‐mm diameter; Nucleopore, Whatman)
  • 1‐liter vacuum flask
  • Alkaline elution funnel apparatus (e.g., Millipore)
  • Aluminum foil or black paper cylinder
  • Multichannel peristaltic pump and suitable Tygon tubing
  • Fraction collector
  • Glass scintillation vials
  • 60°C oven or water bath
  • Liquid scintillation counter or fluorometer
  • Additional reagents and equipment for assessing cell viability by trypan blue exclusion ( appendix 3B )

Alternate Protocol 2: Detection of Interstrand Cross‐links

  Materials
  • Culture of monolayer cells
  • Phosphate‐buffered saline (PBS; see recipe ), ice‐cold
  • K‐SDS cell lysis solution (see recipe )
  • 4 mg/ml bovine serum albumin (BSA; molecular biology grade)
  • Precipitation/washing solution (see recipe )
  • Proteinase K solution (see recipe )
  • 1 mg/ml Hoechst 33258 dye (freshly prepared 1:20 dilution gives A 338 = 1.12)
  • 20 mM Tris⋅Cl, pH 7.5 ( appendix 2A )
  • λ DNA of known concentration
  • 3‐ml syringe with 21‐G needle
  • 50° and 65°C water baths
  • Centrifuge with swinging‐bucket rotor capable of 3300 × g with adapters for 1.5‐ml microcentrifuge tubes (optional)
  • 15‐ml polystyrene centrifuge tubes with caps, sterile
  • 12 × 75–mm borosilicate glass culture tubes of size appropriate for fluorometer
  • Centrifuge with swinging‐bucket rotor capable of 1500 × g with adapters for 15‐ml tubes
  • Fluorometer

Alternate Protocol 3: Detection of DNA‐protein Cross‐links

  • Pico green (Molecular Probes)
  • TE buffer, pH 7.5: 10 mM Tris⋅Cl ( appendix 2A ) containing 1 mM EDTA
  • 1 mg/ml DNA stock solution
  • Polystyrene 96‐well plates (Corning Costar no. 3603)
  • Phosphorimager or microtiter plate reader

Alternate Protocol 4: Detection of Oxidative DNA Base Modifications

  • 5 M NaCl
  • 25:24:1 (v/v/v) phenol/chloroform/isoamyl alcohol (prepared with buffered phenol; unit 3.5 )
  • 24:1 chloroform/isoamyl alcohol
  • DNA from test species
  • TE buffer, pH 8: 10 mM Tris⋅Cl, pH 8 ( appendix 2A ) containing 1 mM EDTA
  • 3 M NaOH
  • 2 M ammonium acetate, pH 7
  • 6× SSPE (see recipe for 10×)
  • Human Alu DNA or purified DNA from other species for use as a probe
  • Random priming kit (e.g., Prime‐A‐Gene Labeling System; Promega)
  • Prehybridization solution (see recipe )
  • 2× and 0.1× SSC (see recipe for 20×)
  • 2× SSC (see recipe for 20×) containing 1% (w/v) SDS
  • 45°, 65°, and 70°C water bath
  • Slot blot apparatus
  • UV transilluminator
  • Sephadex G‐50 spin column
  • X‐ray film
  • Additional reagents and equipment for DNA labeling with 32 P, purification of DNA probes, and autoradiography ( appendix 3A )

Alternate Protocol 5: Detection of Double‐strand DNA Breakage

  Materials
  • Male 200 to 250 g Fisher 344 rats (Charles River Laboratories, Harlan Sprague‐Dawley)
  • General anesthetic (e.g., sodium pentobarbital)
  • 70% and 90% (v/v) and absolute ethanol
  • Liver perfusion buffer 1 (see recipe )
  • Liver perfusion buffer 2 (see recipe )
  • Collagenase A
  • 769 mM CaCl 2
  • Williams medium E‐complete medium (WE‐C medium; see recipe )
  • Williams medium E‐incomplete medium (WE‐I medium; see recipe )
  • 0.4% (w/v) trypan blue stain
  • 1 mCi/ml [3 H]thymidine
  • Phosphate‐buffered saline (PBS; see recipe )
  • 1:3 (v/v) glacial acetic acid/absolute ethanol, freshly prepared
  • Permount mounting medium (Fisher)
  • Glycerol
  • Kodak NTB‐2 autoradiography emulsion
  • Desiccant (e.g., silica gel or Drierite)
  • Kodak D19 developer
  • Kodak Fixer
  • Mayers hemalum stain (see recipe )
  • 1% (w/v) aqueous eosin Y
  • Xylene
  • Sterile cotton surgical gauze
  • Dissection scissors
  • Suture thread
  • 18‐G and 14‐G catheters
  • Surgical tubing ∼3 mm o.d. (suitable for a peristaltic pump, e.g., high‐pressure tubing with male and female Luer‐Lok connectors; Harvard Apparatus)
  • Variable‐flow peristaltic pump
  • 6‐well multi‐well plates or 30‐mm Petri dishes, sterile
  • Cheesecloth or gauze, sterile
  • 50‐ml plastic centrifuge tubes, sterile
  • Sterile glass beaker
  • Hemacytometer
  • Microscope with 100× objective interfaced to a colony counter
  • 25‐mm‐diameter round plastic coverslips, sterile (e.g., Thermanox; Fisher)
  • Microscope slides
  • 50‐ml plastic graduated cylinders cut to 30‐ml mark
  • 43°C water bath
  • Plastic teaspoons
  • Light‐proof slide boxes
  • Staining troughs
  • 22 × 50–mm glass coverslips
  • Additional reagents and equipment for counting cells and assessing viability with trypan blue ( appendix 3B )
NOTE: All culture incubations should be performed in a humidified 37°C, 5% CO 2 incubator unless otherwise specified.NOTE: All solutions and equipment coming into contact with live cells must be sterile, and aseptic technique should be used accordingly.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   Figure 3.5.1 Untreated lymphocytes processed as controls in the comet assay. From McKelvey‐Martin et al. (); reprinted with permission from Elsevier Science Publishers.
    View Image
  •   Figure 3.5.2 Human lymphocyte following treatment with 172.5 µM H2 O2 for 1 hr at 4°C and processed in the comet assay. From McKelvey‐Martin et al. (); reprinted with permission from Elsevier Science Publishers.
    View Image
  •   Figure 3.5.3 Protein‐dependent (A ) and protein‐independent (B ) DNA cross‐linking in L 1210 cells by bis (2‐chloroethyl) methyl amine (HN2 ). Cells, prelabeled with [14 C]thymidine (20 hr) were treated with 0.1 µM HN2 (0.5 hr). Tests were conducted with and without proteinase K and with and without 300 red of X ray. Symbols: open circles, no X ray or proteinase K; open triangle, X ray, no proteinase K; filled circle, no X ray with proteinase K; filled triangle, X ray with proteinase K. From Ewig and Kohn ; reprinted with permission from American Association for Cancer Research (AACR).
    View Image
  •   Figure 3.5.4 DNA‐protein cross‐links (mean ± std. dev.) induced by cis‐platinum (cis‐Pt; 16 hr) in EBV‐transformed human Burkitt's lymphoma cells. From Costa et al. (). Reprinted with permission from Elsevier Science Publishers.
    View Image
  •   Figure 3.5.5 Unscheduled DNA synthesis (UDS) in human amnion (AV3 ) cells following culture in arginine‐deficient medium, treatment with 5 mM hydroxyurea (1 hr), irradiation with 254 nm ultraviolet light and exposure to [3 H]TdR (5 µCi/ml medium; 2 or 4 hr). (A ) Control (unirradiated) cells pulsed for 4 hr. (B ) Cells irradiated with 15 ergs/mm2 and pulsed for 2 hr. From Trasko and Yager ; reprinted with permission from Academic Press.
    View Image

Videos

Literature Cited

Literature Cited
   Anard, D., Kirsch‐Volders, M., Elhajouji, A., Belpaeme, K., and Lison, D. 1997. In vitro genotoxic effects of hard metal particles assessed by alkaline single cell electrophoresis and elution assays. Carcinogenesis. 18:177‐184.
   Anderson, D. and Plewa, M.J. 1998. The international comet assay workshop. Mutagenesis. 13:67‐73.
   Böcker, W., Bauch, T., Müller, W.‐U., and Streffer, C. 1997. Image analysis of comet assay measurements. Int. J. Radiat. Biol. 72:449‐460.
   Bradley, M.O. and Kohn, K.W. 1979. X‐ray induced DNA double‐strand break production and repair in mammalian cells as measured by neutral filter elution. Nucl. Acids Res. 7:793‐804.
   Brambilla, G. and Martelli, A. 1995. Cytotoxicity, DNA fragmentation, and DNA repair synthesis in primary human hepatocytes. In In Vitro Testing Protocols: Methods in Molecular Biology, Vol. 43 (S. O'Hare and C.K. Atterwill, eds.) pp. 59‐66. Humana Press, Totowa, N.J.
   Chiu, S‐M., Sokany, N.M., Friedman, L.R., and Oleinick, N.L. 1984. Differential processing of ultraviolet or ionizing radiation–induced DNA‐protein cross‐links in Chinese hamster cells. Int. J. Radiat. Biol. 46:681‐690.
   Collins, A.R., Dobson, V.L., Dusinska, M., Kennedy, G., and Stetina, R. 1997. The comet assay: What can it really tell us? Mutat. Res. 375:183‐193.
   Cook, P.R. and Brazell, I.A. 1975. Supercoils in human DNA. J. Cell Sci. 19:261‐279.
   Costa, M. 1990. Analysis of DNA‐protein complexes induced by chemical carcinogenesis. J. Cell. Biochem. 44:127‐135.
   Costa, M., Zhitkovich, A., and Toniolo, P. 1993. DNA‐protein cross‐links in welders: Molecular implications. Cancer Res. 53:460‐463.
   Costa, M., Zhitkovich, A., Gargas, M., Paustenbach, D., Finley, B., Kuykendall, J., Billings, R., Carlson, T.J., Wetterhahn, K., Xu, J., Patierno, S., and Bogdanffy, M. 1996. Interlaboratory validation of new assay for DNA‐protein cross‐links. Mutat. Res. 369:13‐21.
   Costa, M., Zhitkovich, A., Harris, M., Paustenbach, D., and Gargas, M. 1997. DNA‐protein cross‐links produced by various chemicals in cultured human lymphoma cells. J. Toxicol. Environ. Health. 50:433‐449.
   Dean, S. 1995. Measurement of unscheduled DNA synthesis in vitro using primary rat hepatocyte cultures. In In Vitro Testing Protocols: Methods in Molecular Biology, Vol. 43. (S. O'Hare and C.K. Atterwill, eds.) pp. 267‐276. Humana Press, Totowa, N.J.
   Edler, L. 1994. Biostatistical issues in the design and analysis of multiple or repeated genotoxicity assays. Environ. Health Perspect. 102 (Suppl. 1):53‐59.
   Elia, M.C., DeLuca, J.G., and Bradley, M.O. 1991. Significance and measurement of DNA double‐strand breaks in mammalian cells. Pharmacol. Ther. 51:291‐327.
   Elia, M.C., Storer, R.D., McKelvey, T.W, Kraynak, A.R., Barnum, J.E., Harmon, L.S., DeLuca, J.G., and Nichols, W.W. 1994. Rapid DNA degradation in primary rat hepatocytes treated with diverse cytotoxic chemicals: Analysis by pulsed‐field gel electrophoresis and implications for alkaline elution assays. Environ. Mol. Mutagen. 24:181‐191.
   Ewig, R.A. and Kohn, K.W. 1977. DNA damage and repair in mouse leukemia L1210 cells treated with nitrogen mustard, 1,3‐bis(2‐chloroethyl)‐1‐nitrosourea, and other nitrosoureas. Cancer Res. 37:2114‐22.
   Fairbairn, D.W., Olive, P.L., and O'Neill, K.L. 1995. The comet assay: A comprehensive review. Mutat. Res. 339:37‐59.
   Fautz, R., Husein, B., and Hechenberger, C. 1991. Application of the neutral red assay (NR assay) to monolayer cultures of primary hepatocytes: Rapid colormetric viability determination for the unscheduled DNA synthesis test (UDS). Mutat. Res. 253:173‐179.
   Fortini, P., Raspaglio, G., Falci, M., and Dogliotti, E. 1996. Analysis of DNA alkylation damage and repair in mammalian cells by the comet assay. Mutagenesis. 11:169‐175.
   Gedik, C.M., Ewen, S.W.B., and Collins, A.R. 1992. Single cell gel electrophoresis applied to the analysis of UV‐C damage and its repair in human cells. Int. J. Radiat. Biol. 62:313‐320.
   Green, M.H.L., Lowe, J.E., Delaney, C.A., and Green, I.C. 1996. Comet assay to detect nitric oxide–dependent DNA damage in mammalian cells. Methods Enzymol. 269:243‐266.
   Hamilton, C.M. and Mirsalis, J.C. 1987. Factors that affect the sensitivity of the in vivo‐in vitro hepatocyte DNA repair assay in the male rat. Mutat. Res. 189:341‐347.
   Harbach, P.R., Rostami, H.J., Aaron, C.S., Wiser, S.K., and Grzegorczyk, C.R. 1991. Evaluation of four methods for scoring cytoplasmic grains in the in vitro unscheduled DNA synthesis (UDS) assay. Mutat. Res. 252:139‐148.
   Helbig, R. and Speit, G. 1997. DNA effects in repair‐deficient V79 Chinese hamster cells studied with the comet assay. Mutat. Res. 377:279‐286.
   Henderson, L., Wolfreys, A., Fedyk, J., Bourner, C., and Windebank, S. 1998. The ability of the comet assay to discriminate between genotoxins and cytotoxins. Mutagenesis. 13:89‐94.
   Hill, L.E., Yount, D.J., Garriott, M.L., Tamura, R.N., and Probst, G.S. 1989. Quantification of unscheduled DNA synthesis by a whole‐cell counting method. Mutat. Res. 224:447‐451.
   Kasamatsu, T., Kohda, K., and Kawazoe, Y. 1996. Comparison of chemically induced DNA breakage in cellular and subcellular systems using the comet assay. Mutat. Res. 369:1‐6.
   Kent, C.R.H., Eady, J.J., Ross, G.M., and Steel, G.G. 1995. The comet moment as a measure of DNA damage in the comet assay. Int. J. Radiat. Biol. 67:655‐660.
   Klaude, M., Eriksson, S., Nygren, J., and Ahnström, G. 1996. The comet assay: Mechanisms and technical considerations. Mutat. Res. 363:89‐96.
   Kohn, K.W. 1991. Principles and practice of DNA filter elution. Pharmacol. Ther. 49:55‐77.
   Kohn, K.W. and Ewig, R.A. 1973. Alkaline elution analysis, a new approach to the study of DNA single‐strand interruptions in cells. Cancer Res. 33:1849‐1853.
   Kohn, K.W., Ewig, R.A.G., Erickson, L.C., and Zwelling, L.A. 1981. Measurement of strand breaks and cross‐links by alkaline elution. In DNA Repair: A Laboratory Manual of Research Procedures (E.C. Friedberg and P.C. Hanawalt, eds.) pp. 379‐401. Marcel Dekker, New York.
   Liu, L.F., Rowe, T.C. Yang, L., Tewey, K.M., and Chen, G.L. 1983. Cleavage of DNA by mammalian DNA topoisomerase II. J. Biol. Chem. 258:15365‐15370.
   Lu, J., Kaeck, M.R., Jiang, C., Garcia, G., and Thompson, H.J. 1996. A filter elution assay for the simultaneous detection of DNA double‐ and single‐strand breaks. Anal. Biochem. 235:227‐233.
   Madle, S., Dean, S.W., Andrae, U., Brambilla, G., Burlinson, B., Doolittle, D.J., Furihata, C., Hertner, T., McQueen, C.A., and Mori, H. 1994. Recommendations for the performance of UDS tests in vitro and in vivo. Mutat. Res. 312:263‐285.
   McCarthy, P.J., Sweetman, S.F., McKenna, P.G., and McKelvey‐Martin, V.J. 1997. Evaluation of manual and image analysis quantification of DNA damage in the alkaline comet assay. Mutagenesis. 12:209‐214.
   McGrath, R.A. and Williams, R.W. 1966. Reconstruction in vivo of irradiated E. coli DNA: The rejoining of broken pieces. Nature. 212:534‐535.
   McKelvey‐Martin, V.J., Green, M.H.L., Schmezer, P., Pool‐Zobel, B.L., De Méo, M.P., and Collins, A. 1993. The single‐cell gel electrophoresis assay (comet assay): A European review. Mutat. Res. 288:47‐63.
   Miller, C.A. III. and Costa, M. 1989. Immunological detection of DNA‐protein complexes induced by chromate. Carcinogenesis. 10:667‐672.
   Mitchell, A.D., Casciano, D.A., Meltz, M.L., Robinson, D.E., San, R.H.C., Williams, G.M., and Von Halle, E.S. 1983. Unscheduled DNA synthesis tests: A report of the U.S. Environmental Protection Agency Gene‐Tox Program. Mutat. Res. 123:363‐410.
   Muller, M.T. 1983. Nucleosomes contain DNA binding proteins that resist dissociation by sodium dodecyl sulfate. Biochem. Biophys. Res. Commun. 114:99‐106.
   Naji‐Ali, F., Hasspieler, B.M., Haffner, D., and Adeli, K. 1994. Human bioassays to assess environmental genotoxicity: Development of a DNA repair assay in HepG2 cells. Clin. Biochem. 27:441‐448.
   Olive, P.L. 1989. Cell proliferation as a requirement for development of the contact effect in Chinese hamster V79 spheroids. Mutat. Res. 117:79‐92.
   Olive, P.L., Chan, A.P.S., and Cu, C.S. 1988. Comparison between the DNA precipitation and alkali unwinding assays for detecting DNA strand breaks and cross‐links. Cancer Res. 48:6444‐6449.
   Olive, P.L., Banath, J.P., and Durand, R.E. 1990. Detection of etopside resistance by measuring DNA damage in individual Chinese hamster cells. J. Natl. Cancer Inst. 82:779‐783.
   Olive, P.L., Wlodek, D., and Banath, J.P. 1991. DNA double‐strand breaks measured in individual cells subjected to gel electrophoresis. Cancer Res. 51:4671‐4676.
   Ostling, O. and Johanson, K.J. 1984. Microelectrophoretic study of radiation‐induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun. 123:291‐298.
   Parton, J.W., Yount, D.J., and Garriott, M.L. 1995. Improved sensitivity of the unscheduled DNA synthesis assay in primary rat hepatocytes following culture in serum‐free defined media. Environ. Mol. Mutagen. 26:147‐154.
   Pflaum, M., Will, O., and Epe, B. 1997. Determination of steady‐state levels of oxidative DNA base modification in mammalian cells by means of repair endonucleases. Carcinogenesis. 18:2225‐2231.
   Pfuhler, S. and Wolf, H.U. 1996. Detection of DNA‐cross‐linking agents with alkaline comet assay. Environ. Mol. Mutagen. 27:196‐201.
   Rasmussen, R.E. and Painter, R.B. 1966. Radiation‐stimulated DNA synthesis in cultured mammalian cells. J. Cell Biol. 9:11‐19.
   Ross, G.M., McMillan, T.J., Wilcox, P., and Collins, A.R. 1995. The single microgel electrophoresis assay (comet assay): Technical aspects and applications: Report on the 5th L.H. Gray Trust Workshop, Institute of Cancer Research, 1994. Mutat. Res. 337:57‐60.
   Rueff, J., Chiapella, C., Chipman, J.K., Darroudi, F., Silva, I.D., Duverger‐van Bogaert, M., Fonti, E., Glatt, H.R., Isern, P., Laires, A., Léonard, A., Llagostera, M., Mossesso, P., Natarajan, A.T., Palitti, F., Rodrigues, A.S., Schinoppi, A., Turchi, G., and Werle‐Schneider, G. 1996. Development and validation of alternative metabolic systems for mutagenicity testing in short‐term assays. Mutat. Res. 353:151‐176.
   Selden, J.R., Dolbeare, F., Clair, J.H., Miller, J.E., McGettigan, K., DiJohn, J.A., Dysart, G.R., and DeLuca, J.G. 1994. Validation of flow cytometric in vitro DNA repair (UDS) assay in rat hepatocytes. Mutat. Res. 315:147‐167.
   Singh, N.P. 1996. Microgel electrophoresis of DNA from individual cells. Principles and methodology. In Technologies for Detection of DNA Damage and Mutations. (G. Pfeifer, ed.) pp. 3‐24. Plenum, New York.
   Singh, N.P. 1997. Sodium ascorbate induces DNA single‐strand breaks in human cells in vitro. Mutat. Res. 375:195‐203.
   Singh, N.P., McCoy, M.T., Tice, R.R., Schneider, E.L. 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175:184‐191.
   Singh, N.P., Stephens, R.E., and Schneider, E.L. 1994. Modifications of alkaline microgel electrophoresis for sensitive detection of DNA damage. Int. J. Radiat. Biol. 66:23‐28.
   Speit, G., Hanelt, S., Helbig, R., Seidel, A., and Hartmann, A. 1996. Detection of DNA effects in human cells with the comet assay and their relevance for mutagenesis. Toxicol. Lett. 88:91‐98.
   Sterzel, W., Bedford, P., and Eisenbrand, G. 1985. Automated determination of DNA using the fluorochrome Hoechst 33258. Anal. Biochem. 147:462‐467.
   Stout, D.L. and Becker, F.F. 1982. Fluorometric quantitation of single‐stranded DNA: A method applicable to the technique of alkaline elution. Anal. Biochem. 127:302‐307.
   Swierenga, S.H.H., Bradlaw, J.A., Brillinger, R.L., Gilman, J.P.W., Nestmann, E.R., and San, R.C. 1991. Recommended protocols based on a survey of current practice in genotoxicity testing laboratories: I. Unscheduled DNA synthesis assay in rat hepatocyte cultures. Mutat. Res. 246:235‐253.
   Szmigiero, L. and Studzian, K. 1988. H2O2 as a DNA fragmenting agent in the alkaline elution interstrand cross‐linking and DNA‐protein cross‐linking assays. Anal. Biochem. 168:88‐93.
   Taioli, E., Zhitkovich, A., Toniolo, P., and Costa, M. 1995. Normal values of DNA‐protein cross‐links in mononuclear blood cells of a population of healthy controls. Cancer J. 8:76‐78.
   Trasko, J.E. and Yager, J.D. 1974. Method to measure physical and chemical carcinogen‐induced “unscheduled DNA synthesis” in rapidly dividing eukaryotic cells. Exp. Cell Res. 88:47‐55.
   Wedrychowski, A., Ward, W.S., Schmidt, W.N., and Hnilica, L.S. 1985. Chromium‐induced cross‐linking of nuclear proteins and DNA. J. Biol. Chem. 260:7150‐7155.
   Williams, G.M. 1976. Carcinogen‐induced DNA repair in primary rat liver cell cultures: A possible screen for chemical carcinogens. Cancer Lett. 1:231‐236.
   Williams, G.M., Mori, H., and McQueen, C.A. 1989. Structure‐activity relationships in the rat hepatocyte DNA‐repair test for 300 chemicals. Mutat. Res. 221:263‐286.
   Zhitkovich, A. and Costa, M. 1992. A simple, sensitive assay to detect DNA‐ protein crosslinks in intact cells and in vivo. Carcinogenesis. 13:1485‐1489.
   Zhitkovich, A., Lukanova, A., Popov, T., Taioli, E., Cohen, H., Costa, M., and Toniolo, P. 1996. DNA‐protein cross‐links in peripheral lymphocytes of individuals exposed to hexavalent chromium compounds. Biomarkers. 1:86‐93.
   Zhitkovich, A., Voitkun, V., Kluz, T., and Costa, M. 1998. Utilization of DNA‐protein cross‐links as a biomarker of chromium exposure. Environ. Health Perspect. 106 Suppl 4:969‐974.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library
 
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序