丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Synthetic Hydrogel Matrices for Guided Bladder Tissue Regeneration

互联网

541
Tissue engineering aims to provide a temporary scaffold for repair at the site of injury or disease that is able to support cell attachment and growth while synthesis of matrix proteins and reorganization take place. Although relatively successful, bladder tissue engineering suffers from the formation of scar tissue at the scaffold implant site partly due to the phenotypic switch of smooth muscle cells (SMCs) from a quiescent contractile phenotype to a synthetic proliferative phenotype, known as myofibroblast. We hypothesize that culturing human SMCs in enzymatically degradable poly(ethylene) glycol (PEG) hydrogels modified with integrin-binding peptides, and in co-culture with human urothelial cells (UCs), will offer some insight as to the required environment for their subsequent differentiation into quiescent SMCs. We have established protocols for isolation, culture, and characterization of human bladder UCs, SMCs, and fibroblasts and investigated co-culture conditions for SMCs and UCs. The optimal PEG hydrogel properties, promoting growth of these cells, have been investigated by varying the amounts of cell adhesion peptide, PEG, and crosslinker and examined using light and fluorescence microscopy. Furthermore, the cell organization within and on top of gels 14 days post seeding has been examined by histology and immunohistochemistry. We have investigated a co-culture model for UCs and SMCs integrated into PEG hydrogels, mimicking a section of the bladder wall for reconstructive purposes that also could contribute to the understanding of the underlying basic mechanisms of SMC differentiation.
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序