丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Echocardiography in Mice

互联网

1198
  • Abstract
  • Table of Contents
  • Figures
  • Literature Cited

Abstract

 

Murine models have been utilized with increasing frequency mainly due to availability of genetically engineered models. With advancement in high spatial and temporal resolution, echocardiography is used extensively for the evaluation of cardiovascular function in murine models of cardiovascular disease. This review summarizes the general applications and methods involved in echocardiography used to study mouse models for cardiovascular research, based on 20 years of experience in the authors' laboratory. The goal of this article is to provide a practical guide to the use of echo techniques in mice to evaluate cardiac systolic and diastolic function. Curr. Protoc. Mouse Biol. 1:71?83. © 2011 by John Wiley & Sons, Inc.

Keywords: echocardiography; systolic function; diastolic function; mouse

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Echocardiography in Conscious Mice
  • Anesthesia for Mouse Echocardiography
  • Echo Machines and Transducers
  • Considerations in Murine Echocardiography
  • Echo Measurements
  • Vascular Ultrasound in Mice
  • Myocardial Contrast Echocardiography
  • Stress Echocardiography in Mice
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   Figure 1. Diagrams for basic mouse echocardiography views. A shows the position and direction (small arrow) of probe (upper left) for LV long‐axis view (upper right). B demonstrates the position and direction (small arrow) of probe (lower left) for LV short‐axis view (lower right). LA, left atrium; AO, aorta.
    View Image
  •   Figure 2. Images of echocardiographic measurements in mice. (A ) LV M‐mode, allows for assessment of LV systolic function. IVSd, LVIDd, PWd, and IVSs, LVIDs, PWs are LV interventricular septum thicknesses, LV internal dimensions and LV posterior wall thicknesses at diastole and systole, respectively. (B ) Doppler of transmitral inflow most often used for evaluation of LV diastolic function. E and A are peak velocities at early and late filling, respectively. IVRT and IVCT are isovolumetric relaxation and contraction time. ET is LV ejection time. (C ) Tissue Doppler waveform obtained in LV posterior wall, used for assessing regional wall motion abnormality. Ea and Aa were two waveforms at early and late diastolic phases. Sa is the peak wall motion velocity in systole.
    View Image
  •   Figure 3. Comparing fractional shortening (FS) in two strains of mice (FVB, C57BL/6J) before and after 1, 2, and 3 weeks of pressure overload induced by transverse aortic constriction (TAC). FS was significantly decreased in C57BL mice (square) even 1 week after TAC. However, in FVB mice (triangle) FS was maintained at normal levels even after 2 weeks of TAC. * p <0.05 versus baseline. FS, fractional shortening.
    View Image
  •   Figure 4. These are representative images and echocardiography data displaying changes in LV fractional shortening (FS) with isoproterenol and cardiomyopathy. (A ) Represents a baseline image (ES, end systole; ED, end diastole). (B ) After infusion with isoproterenol 0.04 µg/kg/min, LV contraction was markedly increased. (C ) In transgenic mice with cardiomyopathy a clear decrease in LV contraction is observed. (D ) LV FS increases with increasing doses of isoproterenol. (E ) LV FS is enhanced in young transgenic mice over‐expressing β1‐adrenergic receptors in the heart (β1‐AR Tg, gray bar) as compared to the wild type (WT, white bar). However, as the mice develop cardiomyopathy with age (black bar), LV FS is found to be decreased. * p <0.05 versus WT (Peter et al., ). Reproduced from Peter et al. () with permission from the American Society for Clinical Investigation.
    View Image

Videos

Literature Cited

Literature Cited
   Asai, K., Yang, G.P., Geng, Y.J., Takagi, G., Bishop, S., Ishikawa, Y., Shannon, R.P., Wagner, T.E., Vatner, D.E., Homcy, C.J., and Vatner, S.F. 1999. Beta‐adrenergic receptor blockade arrests myocyte damage and preserves cardiac function in the transgenic G(sα) mouse. J. Clin. Invest. 104:551‐558.
   Broberg, C.S., Pantely, G.A., Barber, B.J., Mack, G.K., Lee, K., Thigpen, T., Davis, L.E., Sahn, D., and Hohimer, A.R. 2003. Validation of the myocardial performance index by echocardiography in mice: A noninvasive measure of left ventricular function. J. Am. Soc. Echocardiogr. 16:814‐823.
   Depre, C., Wang, Q., Yan, L., Hedhli, N., Peter, P., Chen, L., Hong, C., Hittinger, L., Ghaleh, B., Sadoshima, J., Vatner, D.E., Vatner, S.F., and Madura, K. 2006. Activation of the cardiac proteasome during pressure overload promotes ventricular hypertrophy. Circulation 114:1821‐1828.
   Derumeaux, G., Ichinose, F., Raher, M.J., Morgan, J.G., Coman, T., Lee, C., Cuesta, J.M., Thibault, H., Bloch, K.D., Picard, M.H., and Scherrer‐Crosbie, M. 2008. Myocardial alterations in senescent mice and effect of exercise training: A strain rate imaging study. Circ. Cardiovasc. Imaging 1:227‐234.
   Droogmans, S., Lauwers, R., Cosyns, B., Roosens, B., Franken, P.R., Weytjens, C., Bossuyt, A., Lahoutte, T., Schoors, D., and Van Camp, G. 2008. Impact of anesthesia on valvular function in normal rats during echocardiography. Ultrasound Med. Biol. 34:1564‐1572.
   Du, J., Liu, J., Feng, H.Z., Hossain, M.M., Gobara, N., Zhang, C., Li, Y., Jean‐Charles, P.Y., Jin, J.P., and Huang, X.P. 2008. Impaired relaxation is the main manifestation in transgenic mice expressing a restrictive cardiomyopathy mutation, R193H, in cardiac TnI. Am. J. Physiol. Heart Circ. Physiol. 294:H2604‐H2613.
   Feintuch, A., Ruengsakulrach, P., Lin, A., Zhang, J., Zhou, Y.Q., Bishop, J., Davidson, L., Courtman, D., Foster, F.S., Steinman, D.A., Henkelman, R.M., and Ethier, C.R. 2007. Hemodynamics in the mouse aortic arch as assessed by MRI, ultrasound, and numerical modeling. Am. J. Physiol. Heart Circ. Physiol. 292:H884‐H892.
   French, B.A., Li, Y., Klibanov, A.L., Yang, Z., and Hossack, J.A. 2006. 3D perfusion mapping in post‐infarct mice using myocardial contrast echocardiography. Ultrasound Med. Biol. 32:805‐815.
   Gao, S., Yan, L., Hong, C., Zhao, X., Chen, L., Shen, Y.T., Vatner, S.F., and Vatner, D.E. 2008a. Enhanced coronary reserve mediated by nitric oxide in adenylyl cyclase type 5 knockout. Circulation 118:S_367.
   Gao, S., Yan, L., Hong, C., Zhao, X., Chen, L., Shen, Y.V., Vatner, S.F., and Vatner, D. 2008b. Reduced coronary reserve as a mechanism in beta‐adrenergic receptor mediated cardiomyopathy and its rescue by adenylyl cyclase type 5 knockout. Circulation 118:S_562.
   Gardin, J.M., Siri, F.M., Kitsis, R.N., Edwards, J.G., and Leinwand, L.A. 1995. Echocardiographic assessment of left ventricular mass and systolic function in mice. Circ. Res. 76:907‐914.
   Gelpi, R.J., Gao, S., Zhai, P., Yan, L., Hong, C., Danridge, L.M., Ge, H., Maejima, Y., Donato, M., Yokota, M., Molkentin, J.D., Vatner, D.E., Vatner, S.F., and Sadoshima, J. 2009. Genetic inhibition of calcineurin induces diastolic dysfunction in mice with chronic pressure overload. Am. J. Physiol. Heart Circ. Physiol. 297:H1814‐H1819.
   Guellich, A., Gao, S., Hong, C., Yan, L., Wagner, T.E., Dhar, S.K., Ghaleh, B., Hittinger, L., Iwatsubo, K., Ishikawa, Y., Vatner, S.F., and Vatner, D.E. 2010. Effects of cardiac overexpression of type 6 adenylyl cyclase affects on the response to chronic pressure overload. Am. J. Physiol. Heart Circ. Physiol. 299:H707‐H712.
   Hart, C.Y., Burnett, J.C. Jr., and Redfield, M.M. 2001. Effects of avertin versus xylazine‐ketamine anesthesia on cardiac function in normal mice. Am. J. Physiol. Heart Circ. Physiol. 281:H1938‐H1945.
   Hartley, C.J., Reddy, A.K., Madala, S., Michael, L.H., Entman, M.L., and Taffet, G.E. 2008. Doppler estimation of reduced coronary flow reserve in mice with pressure overload cardiac hypertrophy. Ultrasound Med. Biol. 34:892‐901.
   Iwase, M., Bishop, S.P., Uechi, M., Vatner, D.E., Shannon, R.P., Kudej, R.K., Wight, D.C., Wagner, T.E., Ishikawa, Y., Homcy, C.J., and Vatner, S.F. 1996. Adverse effects of chronic endogenous sympathetic drive induced by cardiac GS alpha overexpression. Circ. Res. 78:517‐524.
   Iwase, M., Uechi, M., Vatner, D.E., Asai, K., Shannon, R.P., Kudej, R.K., Wagner, T.E., Wight, D.C., Patrick, T.A., Ishikawa, Y., Homcy, C.J., and Vatner, S.F. 1997. Cardiomyopathy induced by cardiac Gs alpha overexpression. Am. J. Physiol. 272:H585‐H589.
   Jassal, D.S., Han, S.Y., Hans, C., Sharma, A., Fang, T., Ahmadie, R., Lytwyn, M., Walker, J.R., Bhalla, R.S., Czarnecki, A., Moussa, T., and Singal, P.K. 2009. Utility of tissue Doppler and strain rate imaging in the early detection of trastuzumab and anthracycline mediated cardiomyopathy. J. Am. Soc. Echocardiogr. 22:418‐424.
   Kaufmann, B.A., Lankford, M., Behm, C.Z., French, B.A., Klibanov, A.L., Xu, Y., and Lindner, J.R. 2007. High‐resolution myocardial perfusion imaging in mice with high‐frequency echocardiographic detection of a depot contrast agent. J. Am. Soc. Echocardiogr. 20:136‐143.
   Kreissl, M.C., Wu, H.M., Stout, D.B., Ladno, W., Schindler, T.H., Zhang, X., Prior, J.O., Prins, M.L., Chatziioannou, A.F., Huang, S.C., and Schelbert, H.R. 2006. Noninvasive measurement of cardiovascular function in mice with high‐temporal‐resolution small‐animal PET. J. Nucl. Med. 47:974‐980.
   Luo, J., Fujikura, K., Homma, S., and Konofagou, E.E. 2007. Myocardial elastography at both high temporal and spatial resolution for the detection of infarcts. Ultrasound Med. Biol. 33:1206‐1223.
   Mor‐Avi, V., Korcarz, C., Fentzke, R.C., Lin, H., Leiden, J.M., and Lang, R.M. 1999. Quantitative evaluation of left ventricular function in a transgenic mouse model of dilated cardiomyopathy with 2‐dimensional contrast echocardiography. J. Am. Soc. Echocardiogr. 12:209‐214.
   Nahrendorf, M., Badea, C., Hedlund, L.W., Figueiredo, J.L., Sosnovik, D.E., Johnson, G.A., and Weissleder, R. 2007. High‐resolution imaging of murine myocardial infarction with delayed‐enhancement cine micro‐CT. Am. J. Physiol. Heart Circ. Physiol. 292:H3172‐H3178.
   Odashima, M., Usui, S., Takagi, H., Hong, C., Liu, J., Yokota, M., and Sadoshima, J. 2007. Inhibition of endogenous Mst1 prevents apoptosis and cardiac dysfunction without affecting cardiac hypertrophy after myocardial infarction. Circ. Res. 100:1344‐1352.
   Odley, A., Hahn, H.S., Lynch, R.A., Marreez, Y., Osinska, H., Robbins, J., and Dorn, G.W. 2nd 2004. Regulation of cardiac contractility by Rab4‐modulated beta2‐adrenergic receptor recycling. Proc. Natl. Acad. Sci. U.S.A. 101:7082‐7087.
   Ohno, M., Cheng, C.P., and Little, W.C. 1994. Mechanism of altered patterns of left ventricular filling during the development of congestive heart failure. Circulation 89:2241‐2250.
   Peng, Y., Popovic, Z.B., Sopko, N., Drinko, J., Zhang, Z., Thomas, J.D., and Penn, M.S. 2009. Speckle tracking echocardiography in the assessment of mouse models of cardiac dysfunction. Am. J. Physiol. Heart Circ. Physiol. 297:H811‐H820.
   Peter, P.S., Brady, J.E., Yan, L., Chen, W., Engelhardt, S., Wang, Y., Sadoshima, J., Vatner, S.F., and Vatner, D.E. 2007. Inhibition of p38 alpha MAPK rescues cardiomyopathy induced by overexpressed beta 2‐adrenergic receptor, but not beta 1‐adrenergic receptor. J. Clin. Invest. 117:1335‐1343.
   Raher, M.J., Thibault, H., Poh, K.K., Liu, R., Halpern, E.F., Derumeaux, G., Ichinose, F., Zapol, W.M., Bloch, K.D., Picard, M.H., and Scherrer‐Crosbie, M. 2007. In vivo characterization of murine myocardial perfusion with myocardial contrast echocardiography: Validation and application in nitric oxide synthase 3 deficient mice. Circulation 116:1250‐1257.
   Roth, D.M., Swaney, J.S., Dalton, N.D., Gilpin, E.A., and Ross, J. Jr. 2002. Impact of anesthesia on cardiac function during echocardiography in mice. Am. J. Physiol. Heart Circ. Physiol. 282:H2134‐H2140.
   Rottman, J.N., Ni, G., Khoo, M., Wang, Z., Zhang, W., Anderson, M.E., and Madu, E.C. 2003. Temporal changes in ventricular function assessed echocardiographically in conscious and anesthetized mice. J. Am. Soc. Echocardiogr. 16:1150‐1157.
   Rottman, J.N., Ni, G., and Brown, M. 2007. Echocardiographic evaluation of ventricular function in mice. Echocardiography 24:83‐89.
   Saraste, A., Kyto, V., Saraste, M., Vuorinen, T., Hartiala, J., and Saukko, P. 2006. Coronary flow reserve and heart failure in experimental coxsackievirus myocarditis. A transthoracic Doppler echocardiography study. Am. J. Physiol. Heart Circ. Physiol. 291:H871‐H875.
   Schaefer, A., Klein, G., Brand, B., Lippolt, P., Drexler, H., and Meyer, G.P. 2003. Evaluation of left ventricular diastolic function by pulsed Doppler tissue imaging in mice. J. Am. Soc. Echocardiogr. 16:1144‐1149.
   Schaefer, A., Meyer, G.P., Hilfiker‐Kleiner, D., Brand, B., Drexler, H., and Klein, G. 2005. Evaluation of tissue Doppler Tei index for global left ventricular function in mice after myocardial infarction: Comparison with pulsed Doppler Tei index. Eur. J. Echocardiogr. 6:367‐375.
   Scherrer‐Crosbie, M. and Thibault, H.B. 2008. Echocardiography in translational research: Of mice and men. J. Am. Soc. Echocardiogr. 21:1083‐1092.
   Scherrer‐Crosbie, M., Steudel, W., Ullrich, R., Hunziker, P.R., Liel‐Cohen, N., Newell, J., Zaroff, J., Zapol, W.M., and Picard, M.H. 1999. Echocardiographic determination of risk area size in a murine model of myocardial ischemia. Am. J. Physiol. 277:H986‐H992.
   Schmidt, A.G., Gerst, M., Zhai, J., Carr, A.N., Pater, L., Kranias, E.G., and Hoit, B.D. 2002. Evaluation of left ventricular diastolic function from spectral and color M‐mode Doppler in genetically altered mice. J. Am. Soc. Echocardiogr. 15:1065‐1073.
   Sebag, I.A., Handschumacher, M.D., Ichinose, F., Morgan, J.G., Hataishi, R., Rodrigues, A.C., Guerrero, J.L., Steudel, W., Raher, M.J., Halpern, E.F., Derumeaux, G., Bloch, K.D., Picard, M.H., and Scherrer‐Crosbie, M. 2005. Quantitative assessment of regional myocardial function in mice by tissue Doppler imaging: Comparison with hemodynamics and sonomicrometry. Circulation 111:2611‐2616.
   Semeniuk, L.M., Severson, D.L., Kryski, A.J., Swirp, S.L., Molkentin, J.D., and Duff, H.J. 2003. Time‐dependent systolic and diastolic function in mice overexpressing calcineurin. Am. J. Physiol. Heart Circ. Physiol. 284:H425‐H430.
   Slawson, S.E., Roman, B.B., Williams, D.S., and Koretsky, A.P. 1998. Cardiac MRI of the normal and hypertrophied mouse heart. Magn. Reson. Med. 39:980‐987.
   Stypmann, J. 2007. Doppler ultrasound in mice. Echocardiography 24:97‐112.
   Syed, F., Diwan, A., and Hahn, H.S. 2005. Murine echocardiography: A practical approach for phenotyping genetically manipulated and surgically modeled mice. J. Am. Soc. Echocardiogr. 18:982‐990.
   Tan, T.P., Gao, X.M., Krawczyszyn, M., Feng, X., Kiriazis, H., Dart, A.M., and Du, X.J. 2003. Assessment of cardiac function by echocardiography in conscious and anesthetized mice: Importance of the autonomic nervous system and disease state. J. Cardiovasc. Pharmacol. 42:182‐190.
   Tanaka, N., Dalton, N., Mao, L., Rockman, H.A., Peterson, K.L., Gottshall, K.R., Hunter, J.J., Chien, K.R., and Ross, J. Jr. 1996. Transthoracic echocardiography in models of cardiac disease in the mouse. Circulation 94:1109‐1117.
   Thibault, H., Gomez, L., Donal, E., Pontier, G., Scherrer‐Crosbie, M., Ovize, M., and Derumeaux, G. 2007. Acute myocardial infarction in mice: Assessment of transmurality by strain rate imaging. Am. J. Physiol. Heart Circ. Physiol. 293:H496‐H502.
   Tsujita, Y., Kato, T., and Sussman, M.A. 2005. Evaluation of left ventricular function in cardiomyopathic mice by tissue Doppler and color M‐mode Doppler echocardiography. Echocardiography 22:245‐253.
   Vatner, S.F. and Braunwald, E. 1975. Cardiovascular control mechanisms in the conscious state. N. Engl. J. Med. 293:970‐976.
   Vatner, S., Takagi, G., Asai, K., and Shannon, R.P. 2002. Cardiovascular physiology in mice: Conscious measurements and effects of anesthesia. In Cardiovascular Physiology in the Genetically Engineered Mouse (R.A. Walsh and B.D. Hoit, eds.) pp. 257‐275. Springer Netherlands.
   Wiesmann, F., Ruff, J., Engelhardt, S., Hein, L., Dienesch, C., Leupold, A., Illinger, R., Frydrychowicz, A., Hiller, K.H., Rommel, E., Haase, A., Lohse, M.J., and Neubauer, S. 2001. Dobutamine‐stress magnetic resonance microimaging in mice: Acute changes of cardiac geometry and function in normal and failing murine hearts. Circ. Res. 88:563‐569.
   Wikstrom, J., Gronros, J., Bergstrom, G., and Gan, L.M. 2005. Functional and morphologic imaging of coronary atherosclerosis in living mice using high‐resolution color Doppler echocardiography and ultrasound biomicroscopy. J. Am. Coll. Cardiol. 46:720‐727.
   Wikstrom, J., Gronros, J., and Gan, L.M. 2008. Adenosine induces dilation of epicardial coronary arteries in mice: Relationship between coronary flow velocity reserve and coronary flow reserve in vivo using transthoracic echocardiography. Ultrasound Med. Biol. 34:1053‐1062.
   Williams, R., Needles, A., Cherin, E., Zhou, Y.Q., Henkelman, R.M., Adamson, S.L., and Foster, F.S. 2007. Noninvasive ultrasonic measurement of regional and local pulse‐wave velocity in mice. Ultrasound Med. Biol. 33:1368‐1375.
   Yan, L., Vatner, D.E., O'Connor, J.P., Ivessa, A., Ge, H., Chen, W., Hirotani, S., Ishikawa, Y., Sadoshima, J., and Vatner, S.F. 2007. Type 5 adenylyl cyclase disruption increase longevity and protects against stress. Cell 130:247‐258.
   Yang, X.P., Liu, Y.H., Rhaleb, N.E., Kurihara, N., Kim, H.E., and Carretero, O.A. 1999. Echocardiographic assessment of cardiac function in conscious and anesthetized mice. Am. J. Physiol. 277:H1967‐H1974.
   Yang, Z., Berr, S.S., Gilson, W.D., Toufektsian, M.C., and French, B.A. 2004. Simultaneous evaluation of infarct size and cardiac function in intact mice by contrast‐enhanced cardiac magnetic resonance imaging reveals contractile dysfunction in noninfarcted regions early after myocardial infarction. Circulation 109:1161‐1167.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library
 
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序