丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Imaging and Tracking of Bone Marrow-Derived Immune and Stem Cells

互联网

618
Bone marrow (BM)-derived stem and immune cells play critical roles in maintaining the health, regeneration, and repair of many tissues. Given their important functions in tissue regeneration and therapy, tracking the dynamic behaviors of BM-derived cells has been a long-standing research goal of both biologists and engineers. Because of the complex cellular-level processes involved, real-time imaging technologies that have sufficient spatial and temporal resolution to visualize them are needed. In addition, in order to track cellular dynamics, special attention is needed to account for changes in the microenvironment where the cells reside, for example, tissue contraction, stretching, development, etc. In this chapter, we introduce methods for real-time imaging and longitudinal tracking of BM-derived immune and stem cells in in vivo three-dimensional (3-D) tissue environments with an integrated optical microscope. The integrated microscope combines multiple imaging functions derived from optical coherence tomography (OCT) and multiphoton microscopy (MPM), including optical coherence microscopy (OCM), microvasculature imaging, two-photon excited fluorescence (TPEF), and second harmonic generation (SHG) microscopy. Short- and long-term tracking of the dynamic behavior of BM-derived cells involved in cutaneous wound healing and skin grafting in green fluorescent protein (GFP) BM-transplanted mice is demonstrated. Methods and algorithms for nonrigid registration of time-lapse images are introduced, which allows for long-term tracking of cell dynamics over several months.
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序