Use of Liposomes to Evaluate the Role of Membrane Interactions on Antioxidant Activity
互联网
425
Cellular membranes, which contain abundant phospholipids, such as phosphatidylcholine, are major targets subjected to the damage caused by free radicals. Cellular damage due to lipid oxidation is strongly associated with ageing, carcinogenesis and other diseases. In addition, lipid oxidation is an important deteriorative reaction in the processing and storage of lipid-containing foods. Liposomes have been used extensively as biological models for in vitro lipid oxidation studies. The resemblance between the liposomal and membrane bilayer core makes liposomes a very useful tool to investigate the significance of the antioxidant-membrane interactions for antioxidant activity. The antioxidant activity of a compound is strongly influenced by numerous factors including the nature of the lipid substrate, the hydrophilic-lipophilic balance of the antioxidant, the physical and chemical environments of the lipids, and various other interfacial interactions. Thus, compounds that are effective antioxidants in one model system or food matrix may be unsuitable in other systems.
This chapter describes fluorescent probes-based methods commonly used for testing antioxidant activity in liposomes and stresses the need to combine antioxidant assays and drug-membrane interaction studies to get a better description of the antioxidants’ profile considering their location in lipid bilayer and their effect on membrane fluidity and consequently provide additional information to that obtained currently from assays performed in aqueous buffer media.