Cellular senescence suppresses cancer by eliminating potentially oncogenic cells, participates in tissue repair, contributes to cancer therapy, and promotes organismal aging. Numerous activities of senescent cells depend on the aptitude of these cells to secrete myriads of bioactive molecules, a behavior termed the senescence-associated secretory phenotype (SASP). The SASP supports cell-autonomous functions like the senescence-associated growth arrest, and mediates paracrine interactions between senescent cells and their surrounding microenvironment. The biological functions and the regulation of the SASP are beginning to emerge, and current SASP assessment techniques include the analysis of SASP factors at the mRNA level, the direct measurement of factors inside or outside the cell (i.e., secreted), and the detection of SASP-provoked cellular responses. Here, we focus on a simple approach to collect SASP-conditioned media in order to directly measure secreted SASP factors using sandwich enzyme-linked immunosorbent assay. As an example, we discuss the assessment of the major SASP factor interleukin-6 in senescent human fibroblasts. Supplemental notes are provided to easily adapt this procedure to other SASP factors, change cell types, or scale the techniques for different volumes or high-throughput measurements. These techniques should facilitate the discovery of novel functions and regulators of the SASP.