Single-nucleotide polymorphisms (SNPs) are DNA sequence variations that occur at a single base in the genome sequence. SNPs are valuable markers for identifying genes responsible for susceptibility to common diseases, and in some cases, they are the causes of human diseases. A genetic study of a complex disease usually involves a case-control association study that requires genotyping of a large number of SNPs in hundreds of patients (cases) and matched controls. A significant difference of the allele frequency or genotypic frequency of a SNP between the two populations is considered to be the evidence for the association between the SNP and disease. A key to a fast and effective case-control association study requires high-throughput genotyping of SNPs. Two assays—the TaqMan SNP genotyping assay and the pyrosequencing assay—have been developed for this purpose and proven to be particularly useful. Here, we present the operative protocol, clarify the key technical issues, and highlight certain cautionary notes for high throughput SNP genotyping using TaqMan and pyrosequencing assays.