丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Modification of Carbon Nanotube Electrodes with 1-Pyrenebutanoic Acid, Succinimidyl Ester for Enhanced Bioelectrocatalysis

互联网

617
Conductive materials functionalized with redox enzymes provide bioelectronic architectures with application to biological fuel cells and biosensors. Effective electron transfer between the enzyme (biocatalyst) and the conductive materials is imperative for function. Various nanostructured carbon materials are common electrode choices for these applications as both the materials’ inherent conductivity and physical integrity aids optimal performance. The following chapter presents a method for the use of carbon nanotube buckypaper as a conductive architecture suitable for biocatalyst functionalization. In order to securely attach the biocatalyst to the carbon nanotube surface, the conductive buckypaper is modified with the heterobifunctional cross-linker, 1-pyrenebutanoic acid, succinimidyl ester. The technique effectively tethers the enzyme to the carbon nanotube which enhances bioelectrocatalysis, preserves the conductive nature of the carbon surface, and facilities direct electron transfer between the catalyst and material interface. The approach is demonstrated using phenol oxidase (laccase) and pyrroloquinoline quinone-dependent glucose dehydrogenase PQQ-GDH, as representative biocatalysts.
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序