丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

The Mouse as Model System to Study Host‐Pathogen Interactions in Influenza A Infections

互联网

6812
  • Abstract
  • Table of Contents
  • Materials
  • Figures
  • Literature Cited

Abstract

 

The mouse is one of the most important mammalian model systems for studying host?pathogen?interactions during influenza A virus infections and for assessing the virulence of newly emerging influenza viruses. Here, we provide the basic protocols for infecting mice with influenza virus and studying the main pathological changes associated with disease. Critical parameters, e.g., virus variants and subtypes or mouse strains, are discussed. Curr. Protoc. Mouse Biol. 2:177?205 © 2012 by John Wiley & Sons, Inc.

Keywords: infection of mice; influenza A virus; FFU assay; influenza pathology

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Virus Propagation in Embryonated Hen's Eggs
  • Basic Protocol 2: Hemagglutination Assay
  • Basic Protocol 3: Titration of Infectious Virus by Focus‐Forming Unit Assay
  • Basic Protocol 4: Intranasal Infection with Influenza A Virus
  • Basic Protocol 5: Weight Loss and Survival
  • Basic Protocol 6: Necropsy and Preparation of Tissue
  • Basic Protocol 7: Bronchoalveolar Lavage (BAL)
  • Basic Protocol 8: Histopathological Analysis of the Infected Lung
  • Basic Protocol 9: Immunohistological Staining of Influenza A Virions
  • Basic Protocol 10: Preparation of RNA from Infected Lungs
  • Support Protocol 1: Virus Propagation in MDCK II Cells
  • Support Protocol 2: Preparation of Red Blood Cell (RBC) Suspension from Chicken Blood
  • Support Protocol 3: Preparation of Lungs for Determination of Viral Load
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Virus Propagation in Embryonated Hen's Eggs

  Materials
  • SPF (specific‐pathogen‐free) hen's eggs (e.g., from Charles River Laboratories)
  • Influenza virus stock (if titer is known, between 106 and 108 FFU are used for infecting eggs, if titer is unknown, we start with a 1:1000 dilution)
  • Phosphate‐buffered saline (no Mg2+ or Ca2+ ; Invitrogen)
  • Betaisodona solution/povidone iodide (Mundipharma, http://www.mundipharma.de)
  • Egg incubator (Bruja, http://www.bruja.de/)
  • Light source/candling box (Orban)
  • Egg punch (autoclavable)
  • 1‐ml syringe
  • Blunt cannula (0.8 × 22 mm, 21‐G × 7/8; Braun)
  • Glue, adhesive tape, or paraffin to seal the hole in the egg (e.g., Ponal wood glue from Henkel; http://www.henkel.com/)
  • Knife, spoon, and forceps (autoclavable)
  • 15‐ml tubes
  • Pasteur pipets
  • 100‐ to 200‐ml bottle, sterile
  • Additional reagents and equipment for hemagglutination assay ( protocol 2 )

Basic Protocol 2: Hemagglutination Assay

  Materials
  • Allantoic fluid from infected eggs (see protocol 1 , step 11) or virus‐containing supernatant from virus propagation on MDCK cells (see protocol 11 , step 11)
  • Phosphate‐buffered saline (PBS; Invitrogen)
  • 0.9% NaCl (Merck)
  • Chicken red blood cells (RBC) in Alsever's solution (prepare fresh, keep at 4°C; protocol 12 )
  • 96‐well V‐bottom microtiter plate

Basic Protocol 3: Titration of Infectious Virus by Focus‐Forming Unit Assay

  Materials
  • MDCK II cells (Madin Darby Canine Kidney), (ATCC)
  • MDCK II cell culture medium (see recipe )
  • Virus (e.g., harvested from infected embryonated eggs, protocol 1 , or lung homogenates, protocol 13 )
  • Infection medium (see recipe )
  • Overlay solution (see recipe )
  • Fixative: 4% (v/v) formalin in PBS
  • Quencher solution (see recipe )
  • Blocking buffer (see recipe )
  • Washing buffer: 0.5% (v/v) Tween 20 in phosphate‐buffered saline (PBS; no Ca2+ or Mg2+ ; Invitrogen)
  • Primary antibody (polyclonal, against influenza A virions, H1N1; Virostat, http://www.virostat‐inc.com/)
  • Secondary antibody (anti‐goat‐IgG‐HRP; KPL, http://www.kpl.com/)
  • Substrate: TrueBlue peroxidase substrate (KPL, http://www.kpl.com/)
  • 96‐well plates, flat bottom
  • Infrared heat lamp

Basic Protocol 4: Intranasal Infection with Influenza A Virus

  Materials
  • Ketamine (100 mg/ml, e.g., Bela‐Pharm GmbH & Co., http://www.bela‐pharm.com/)
  • Xylazine (20 mg/ml; cp‐pharma, http://www.cp‐pharma.de/)
  • 0.9% (w/v) NaCl (Merck)
  • Influenza A virus (e.g., PR8; see Strategic Planning, Different variants of standard laboratory virus strains ) stock solution in PBS
  • Phosphate‐buffered saline (PBS; Invitrogen)
  • 8‐ to 12‐week‐old mice (see Strategic Planning, Choice of mouse strain and age of mice )
  • Eye ointment (Bepanthen, Bayer)
  • 1‐ml syringe and 26‐G, 0.45 × 12 mm needle

Basic Protocol 5: Weight Loss and Survival

  Materials
  • Animal balance (with box/container/cage to place the mouse in)
  • Software for statistical calculations (e.g., GraphPad Prism 5; http://www.graphpad.com/)
  • Additional reagents and equipment for infection of mice ( protocol 4 ) and for necroscopy and tissue preparation ( protocol 6 )

Basic Protocol 6: Necropsy and Preparation of Tissue

  Materials
  • Infected mouse (see protocol 4 )
  • 70% ethanol
  • Phosphate‐buffered saline (Invitrogen)
  • Optional: Lympholyte M (Cedarlane Laboratories)
  • Digestion medium (see recipe )
  • 2× PBS: dissolve two PBS tablets (Invitrogen) in 500 ml distilled H 2 O
  • Surgical instruments including scissors and forceps
  • Winged infusion set (Multifly, Sarstedt)
  • 100‐µm cell strainer (Becton Dickinson)
  • Refrigerated centrifuge
  • 50‐ml tube to accommodate cell strainer
  • 30‐µm filter (CellTrics; Partec, http://www.partec.com; optional)

Basic Protocol 7: Bronchoalveolar Lavage (BAL)

  Materials
  • Infected mouse ( protocol 4 )
  • 70% ethanol
  • Phosphate‐buffered saline (PBS; Invitrogen)
  • Surgical instruments including scissors and forceps
  • Intravenous indwelling cannula (18‐G, Braun)
  • 1‐ml syringe

Basic Protocol 8: Histopathological Analysis of the Infected Lung

  Materials
  • Xylol (J.T. Baker)
  • 100%, 90%, and 70% ethanol
  • 1× TBS (TBS tablets, Merck)
  • Paraffin sections of influenza‐infected tissue on slides ( protocol 8 )
  • Citrate buffer, pH 6.0 (see recipe )
  • 3% H 2 O 2
  • Primary antibody (polyclonal, against influenza A virions, H1N1; Virostat, http://www.virostat‐inc.com/)
  • Antibody diluent (Zytomed Systems)
  • Secondary antibody (biotin‐labeled rabbit α‐goat IgG H+L, KPL, http://www.kpl.com/)
  • Streptavidin‐HRP (Zytomed Systems)
  • Diaminobenzidine (DAB) substrate buffer (Zytomed Systems)
  • DAB chromogen (Zytomed Systems)
  • Hematoxylin (Merck)
  • Mounting solution (Shandon Consul‐Mount Histology Formulation, Thermo Scientific)
  • Staining jars
  • Coverslips (Menzel)
NOTE: All chemicals must be at room temperature before using them.

Basic Protocol 9: Immunohistological Staining of Influenza A Virions

  Materials
  • RNAlater RNA stabilization reagent (Qiagen)
  • Infected mouse ( protocol 4 )
  • RNase AWAY (Invitrogen)
  • 70% ethanol
  • DEPC‐treated H 2 O (see recipe )
  • RNeasy Midi Kit (Qiagen) or equivalent
  • Dissecting instruments
  • Homogenizer (KINEMATICA POLYTRON PT 2100)
  • Centrifuge with a performance of at least 3000 × g
  • NanoDrop spectrophotometer (Thermo Scientific)
  • Agilent 2100 Bioanalyzer (Agilent Technologies)
  • Agilent RNA 6000 Pico/Nano (Agilent Technologies)

Basic Protocol 10: Preparation of RNA from Infected Lungs

  Materials
  • MDCK II cells (ATCC) growing in culture
  • MDCK II cell culture medium (see recipe )
  • Phosphate‐buffered saline (PBS; Invitrogen)
  • PBS containing 0.2% BSA (Sigma)
  • Virus (e.g., human pandemic 2009 H1N1 isolate)
  • Propagation medium (see recipe )
  • 5 mg/ml TPCK (1‐tosylamide‐2‐phenylethyl chloromethyl ketone)‐Trypsin (Sigma)
  • Liquid N 2 (optional)
  • 75‐cm2 flasks (Biochrom; http://www.biochrom.co.uk/)
  • Additional reagents and equipment for cell culture (Phelan, ) and hemagglutination test ( protocol 2 )

Support Protocol 1: Virus Propagation in MDCK II Cells

  Materials
  • Chicken erythrocytes in Alsever's solution (Fiebig Nährstofftechnik, http://www.fiebig‐naehrstofftechnik.de/)
  • 0.9% NaCl
  • Centrifuge
  • Neubauer hemacytometer

Support Protocol 2: Preparation of Red Blood Cell (RBC) Suspension from Chicken Blood

  Materials
  • Infected mouse ( protocol 4 )
  • 70% ethanol
  • PBS/0.1%BSA
  • 14‐ml tubes (round bottom)
  • Homogenizer (KINEMATICA POLYTRON PT 2100)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   Figure 1. Pipetting scheme for performing the hemagglutination assay.
    View Image
  •   Figure 2. Body weight loss over time. Mice from different inbred strains were infected intranasally with 2 × 103 FFU of PR8 virus. The percentage of the starting weight (set to 100%) is plotted for each day post infection. The figure has been reproduced from Srivastava et al. ().
    View Image
  •   Figure 3. Kaplan‐Meier survival curves. DBA/2J and C57BL/6J mice were infected with increasing doses of PR8 virus via the intranasal route, and survival was monitored for the following 14 days. For each day, the cumulative number of mice that died or were euthanized is recorded. The cumulative percentage of surviving animals is plotted against the time post infection. The figure has been reproduced from Srivastava et al. ()
    View Image
  •   Figure 4. HE staining of lungs. Healthy (A ) and infected lungs (B ) on day 10 after infection of C57BL/6J mice with 2 × 103 FFU of PR8 virus are shown. Infected lungs show massive infiltration of immune cells into the lung tissue.
    View Image
  •   Figure 5. Immunohistochemical staining for viral proteins in infected lungs. C57BL/6J mice were infected intranasally with 2 × 103 FFU of PR8M virus. Serial lung sections were stained with anti‐influenza antibody and hematoxylin). The spread of PR8M virus (cells stained brown) at day 1 post infection was mostly limited to bronchiolar regions (B ). In noninfected mice, no staining was detected (A ). The figure has been partially reproduced from Blazejewska et al. ()
    View Image
  •   Figure 6. Determination of FFU. Image of tissue culture plate (mirror‐inverted) after infection of cells and antibody staining against influenza A proteins. Staining is visualized with TrueBlue peroxidase substrate. Blue foci indicate infected cells.
    View Image
  •   Figure 7. Measurement of viral load in infected lungs by FFU. DBA/2J and C57BL/6J were infected intranasally with 2 × 103 FFU of a low virulent PR8 variant (PR8M) (A ), a more virulent PR8 variant (PR8F) (B ), or a highly virulent PR8 variant (hv PR8) (C ), and viral load in the lungs was determined at indicated days post infection using focus‐forming unit assay. The figure has been reproduced from Blazejewska et al. ()
    View Image

Videos

Literature Cited

Literature Cited
   Antal, C., Muller, S., Wendling, O., Hérault, Y. and Mark, M. 2011. Standardized post‐mortem examination and fixation procedures for mutant and treated mice. Curr. Protoc. Mouse Biol. 1:17‐53.
   Angus, D.W., Baker, J.A., Mason, R., and Martin, I.J. 2008. The potential influence of CO2, as an agent for euthanasia, on the pharmacokinetics of basic compounds in rodents. Drug Metab. Dispos. 36:375‐379.
   Baertschi, B. and Gyger, M. 2011. Ethical considerations in mouse experiments. Curr. Protoc. Mouse Biol. 1:155‐167.
   Belser, J.A., Szretter, K.J., Katz, J.M., and Tumpey, T.M. 2009. Use of animal models to understand the pandemic potential of highly pathogenic avian influenza viruses. Adv. Virus Res. 73:55‐97.
   Belser, J.A., Wadford, D.A., Pappas, C., Gustin, K.M., Maines, T.R., Pearce, M.B., Zeng, H., Swayne, D.E., Pantin‐Jackwood, M., Katz, J.M., and Tumpey, T.M. 2010. Pathogenesis of pandemic influenza A (H1N1) and triple‐reassortant swine influenza A (H1) viruses in mice. J. Virol. 84:4194‐4203.
   Blazejewska, P., Koscinski, L., Viegas, N., Anhlan, D., Ludwig, S., and Schughart, K. 2011. Pathogenicity of different PR8 influenza A virus variants in mice is determined by both viral and host factors. Virology 412:36‐45.
   Boon, A.C., deBeauchamp, J., Hollmann, A., Luke, J., Kotb, M., Rowe, S., Finkelstein, D., Neale, G., Lu, L., Williams, R.W., and Webby, R.J. 2009. Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice. J. Virol. 83:10417‐10426.
   Boon, A.C., Debeauchamp, J., Krauss, S., Rubrum, A., Webb, A.D., Webster, R.G., McElhaney, J., and Webby, R.J. 2010. Cross‐reactive neutralizing antibodies directed against pandemic H1N1 2009 virus are protective in a highly sensitive DBA/2 influenza mouse model. J. Virol. 84:7662‐7667.
   Bouvier, N.M. and Palese, P. 2008. The biology of influenza viruses. Vaccine 26:D49‐D53.
   Brown, E.G., Liu, H., Kit, L.C., Baird, S., and Nesrallah, M. 2001. Pattern of mutation in the genome of influenza A virus on adaptation to increased virulence in the mouse lung: Identification of functional themes. Proc. Natl. Acad. Sci. U.S.A. 98:6883‐6888.
   Burnett, L.C., Lunn, G. and Coico, R. 2009. Biosafety: Guidelines for working with pathogenic and infectious microorganisms. Curr. Protoc. Microbiol. 13:1A.1.1‐1A.1.14.
   Connor, R.J., Kawaoka, Y., Webster, R.G., and Paulson, J.C. 1994. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205:17‐23.
   Cottey, R., Rowe, C.A., and Bender, B.S. 2001. Influenza virus. Curr. Protoc. Immunol. 42:19.11.1‐19.11.32.
   Danneman, P.J., Stein, S., and Walshaw, S.O. 1997. Humane and practical implications of using carbon dioxide mixed with oxygen for anesthesia or euthanasia of rats. Lab. Anim. Sci. 47:376‐385.
   Ding, M., Lu, L., and Toth, L.A. 2008. Gene expression in lung and basal forebrain during influenza infection in mice. Genes Brain Behav. 7:173‐183.
   Donovan, J. and Brown, P. 2006. Blood collection. Curr. Protoc. Immunol. 73:1.7.1‐1.7.9.
   Fauci, A.S. 2006. Seasonal and pandemic influenza preparedness: Science and countermeasures. J. Infect. Dis. 194:S73‐S76.
   Fraser, C., Donnelly, C.A., Cauchemez, S., Hanage, W.P., Van Kerkhove, M.D., Hollingsworth, T.D., Griffin, J., Baggaley, R.F., Jenkins, H.E., Lyons, E.J., Jombart, T., Hinsley, W.R., Grassly, N.C., Balloux, F., Ghani, A.C., Ferguson, N.M., Rambaut, A., Pybus, O.G., Lopez‐Gatell, H., Alpuche‐Aranda, C.M., Chapela, I.B., Zavala, E.P., Guevara, D.M., Checchi, F., Garcia, E., Hugonnet, S., and Roth, C. 2009. Pandemic potential of a strain of influenza A (H1N1): Early findings. Science 324:1557‐1561.
   Gambotto, A., Barratt‐Boyes, S.M., de Jong, M.D., Neumann, G., and Kawaoka, Y. 2008. Human infection with highly pathogenic H5N1 influenza virus. Lancet 371:1464‐1475.
   Garten, R.J., Davis, C.T., Russell, C.A., Shu, B., Lindstrom, S., Balish, A., Sessions, W.M., Xu, X., Skepner, E., Deyde, V., Okomo‐Adhiambo, M., Gubareva, L., Barnes, J., Smith, C.B., Emery, S.L., Hillman, M.J., Rivailler, P., Smagala, J., de Graaf, M., Burke, D.F., Fouchier, R.A., Pappas, C., Alpuche‐Aranda, C.M., Lopez‐Gatell, H., Olivera, H., Lopez, I., Myers, C.A., Faix, D., Blair, P.J., Yu, C., Keene, K.M., Dotson, P.D. Jr., Boxrud, D., Sambol, A.R., Abid, S.H., St George, K., Bannerman, T., Moore, A.L., Stringer, D.J., Blevins, P., Demmler‐Harrison, G.J., Ginsberg, M., Kriner, P., Waterman, S., Smole, S., Guevara, H.F., Belongia, E.A., Clark, P.A., Beatrice, S.T., Donis, R., Katz, J., Finelli, L., Bridges, C.B., Shaw, M., Jernigan, D.B., Uyeki, T.M., Smith, D.J., Klimov, A.I., and Cox, N.J. 2009. Antigenic and genetic characteristics of swine‐origin 2009 A(H1N1) influenza viruses circulating in humans. Science 325:197‐201.
   Grimm, D., Staeheli, P., Hufbauer, M., Koerner, I., Martínez‐Sobrido, L., Solorzano, A., García‐Sastre, A., Haller, O., and Kochs, G. 2007. Replication fitness determines high virulence of influenza A virus in mice carrying functional Mx1 resistance gene. PNAS 104:6806‐6811.
   Haller, O., Arnheiter, H., and Lindenmann, J. 1976. Genetically determined resistance to infection by hepatotropic influenza A virus in mice: Effect of immunosuppression. Infect. Immun. 13:844‐854.
   Hashimoto, Y., Moki, T., Takizawa, T., Shiratsuchi, A., and Nakanishi, Y. 2007. Evidence for phagocytosis of influenza virus‐infected, apoptotic cells by neutrophils and macrophages in mice. J. Immunol. 178:2448‐2457.
   Hatta, M., Hatta, Y., Kim, J.H., Watanabe, S., Shinya, K., Nguyen, T., Lien, P.S., Le, Q.M., and Kawaoka, Y. 2007. Growth of H5N1 influenza A viruses in the upper respiratory tracts of mice. PLoS Pathog. 3:1374‐1379.
   Heer, A.K., Harris, N.L., Kopf, M., and Marsland, B.J. 2008. CD4+ and CD8+ T cells exhibit differential requirements for CCR7‐mediated antigen transport during influenza infection. J. Immunol. 181:6984‐6994.
   Hoffmann, E., Krauss, S., Perez, D., Webby, R., and Webster, R.G. 2002. Eight‐plasmid system for rapid generation of influenza virus vaccines. Vaccine 20:3165‐3170.
   Howard, H.L., McLaughlin‐Taylor, E., and Hill, R.L. 1990. The effect of mouse euthanasia technique on subsequent lymphocyte proliferation and cell mediated lympholysis assays. Lab. Anim. Sci. 40:510‐514.
   Itoh, Y., Shinya, K., Kiso, M., Watanabe, T., Sakoda, Y., Hatta, M., Muramoto, Y., Tamura, D., Sakai‐Tagawa, Y., Noda, T., Sakabe, S., Imai, M., Hatta, Y., Watanabe, S., Li, C., Yamada, S., Fujii, K., Murakami, S., Imai, H., Kakugawa, S., Ito, M., Takano, R., Iwatsuki‐Horimoto, K., Shimojima, M., Horimoto, T., Goto, H., Takahashi, K., Makino, A., Ishigaki, H., Nakayama, M., Okamatsu, M., Warshauer, D., Shult, P.A., Saito, R., Suzuki, H., Furuta, Y., Yamashita, M., Mitamura, K., Nakano, K., Nakamura, M., Brockman‐Schneider, R., Mitamura, H., Yamazaki, M., Sugaya, N., Suresh, M., Ozawa, M., Neumann, G., Gern, J., Kida, H., Ogasawara, K., and Kawaoka, Y. 2009. In vitro and in vivo characterization of new swine‐origin H1N1 influenza viruses. Nature 460:1021‐1025.
   Johnson, N.P. and Mueller, J. 2002. Updating the accounts: Global mortality of the 1918‐1920 “Spanish” influenza pandemic. Bull. Hist. Med. 76:105‐115.
   Kadar, B., Gombos, K., Szele, E., Ember, I., Ivanyi, J.L., Csejtei, R., and Pajkos, G. 2011. Effects of isoflurane on Nfkappab p65, Gadd45a and Jnk1 expression in the vital organs of CBA/CA mice. In Vivo 25:241‐244.
   Kash, J.C., Tumpey, T.M., Proll, S.C., Carter, V., Perwitasari, O., Thomas, M.J., Basler, C.F., Palese, P., Taubenberger, J.K., Garcia‐Sastre, A., Swayne, D.E., and Katze, M.G. 2006. Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 443:578‐581.
   Katz, J.M., Lu, X., Tumpey, T.M., Smith, C.B., Shaw, M.W., and Subbarao, K. 2000. Molecular correlates of influenza A H5N1 virus pathogenesis in mice. J. Virol. 74:10807‐10810.
   Kilbourne, E.D. 2006. Influenza pandemics of the 20th century. Emerg. Infect. Dis. 12:9‐14.
   Kilbourne, E.D., Schulman, J.L., Schild, G.C., Schloer, G., Swanson, J., and Bucher, D. 1971. Related studies of a recombinant influenza‐virus vaccine. I. Derivation and characterization of virus and vaccine. J. Infect. Dis. 124:449‐462.
   Klenk, H.D., Garten, W., and Matrosovich, M. 2011. Molecular mechanisms of interspecies transmission and pathogenicity of influenza viruses: Lessons from the 2009 pandemic. Bioessays 33:180‐188.
   Koerner, I., Kochs, G., Kalinke, U., Weiss, S., and Staeheli, P. 2007. Protective role of beta interferon in host defense against influenza A virus. J. Virol. 81:2025‐2030.
   Krug, R.M. 2006. Virology: Clues to the virulence of H5N1 viruses in humans. Science 311:1562‐1563.
   Lu, X., Tumpey, T.M., Morken, T., Zaki, S.R., Cox, N.J., and Katz, J.M. 1999. A mouse model for the evaluation of pathogenesis and immunity to influenza A (H5N1) viruses isolated from humans. J. Virol. 73:5903‐5911.
   Maines, T.R., Lu, X.H., Erb, S.M., Edwards, L., Guarner, J., Greer, P.W., Nguyen, D.C., Szretter, K.J., Chen, L.M., Thawatsupha, P., Chittaganpitch, M., Waicharoen, S., Nguyen, D.T., Nguyen, T., Nguyen, H.H., Kim, J.H., Hoang, L.T., Kang, C., Phuong, L.S., Lim, W., Zaki, S., Donis, R.O., Cox, N.J., Katz, J.M., and Tumpey, T.M. 2005. Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. J. Virol. 79:11788‐11800.
   Maines, T.R., Jayaraman, A., Belser, J.A., Wadford, D.A., Pappas, C., Zeng, H., Gustin, K.M., Pearce, M.B., Viswanathan, K., Shriver, Z.H., Raman, R., Cox, N.J., Sasisekharan, R., Katz, J.M., and Tumpey, T.M. 2009. Transmission and pathogenesis of swine‐origin 2009 A(H1N1) influenza viruses in ferrets and mice. Science 325:484‐487.
   Matsuoka, Y., Lamirande, E.W., and Subbarao, K. 2009a. The ferret model for influenza. Curr. Protoc. Microbiol. 13:15G.2.1‐15G.2.29.
   Matsuoka, Y., Lamirande, E.W., and Subbarao, K. 2009b. The mouse model for influenza. Curr. Protoc. Microbiol. 13:15G.3.1‐15G.3.30.
   McAuley, J.L., Hornung, F., Boyd, K.L., Smith, A.M., McKeon, R., Bennink, J., Yewdell, J.W., and McCullers, J.A. 2007. Expression of the 1918 influenza A virus PB1‐F2 enhances the pathogenesis of viral and secondary bacterial pneumonia. Cell Host Microbe 2:240‐249.
   McGill, J., Heusel, J.W., and Legge, K.L. 2009. Innate immune control and regulation of influenza virus infections. J. Leukoc. Biol. 86:803‐812.
   Munster, V.J., de Wit, E., van den Brand, J.M., Herfst, S., Schrauwen, E.J., Bestebroer, T.M., van de Vijver, D., Boucher, C.A., Koopmans, M., Rimmelzwaan, G.F., Kuiken, T., Osterhaus, A.D., and Fouchier, R.A. 2009. Pathogenesis and transmission of swine‐origin 2009 A(H1N1) influenza virus in ferrets. Science 325:481‐483.
   Neumann, G., Noda, T., and Kawaoka, Y. 2009. Emergence and pandemic potential of swine‐origin H1N1 influenza virus. Nature 459:931‐939.
   Otte, A., Sauter, M., Alleva, L., Baumgarte, S., Klingel, K., and Gabriel, G. 2011. Differential host determinants contribute to the pathogenesis of 2009 pandemic H1N1 and human H5N1 influenza a viruses in experimental mouse models. Am. J. Pathol. 179:230‐239.
   Pecaut, M.J., Smith, A.L., Jones, T.A., and Gridley, D.S. 2000. Modification of immunologic and hematologic variables by method of CO2 euthanasia. Comp. Med. 50:595‐602.
   Perrone, L.A., Plowden, J.K., Garcia‐Sastre, A., Katz, J.M., and Tumpey, T.M. 2008. H5N1 and 1918 pandemic influenza virus infection results in early and excessive infiltration of macrophages and neutrophils in the lungs of mice. PLoS Pathog. 4:e100115.
   Phelan, M.C. 2007. Basic techniques in mammalian cell tissue culture. Curr. Protoc. Cell Biol. 36:1.1.1‐1.1.18.
   Rogers, G.N. and Paulson, J.C. 1983. Receptor determinants of human and animal influenza virus isolates: Differences in receptor specificity of the H3 hemagglutinin based on species of origin. Virology 127:361‐373.
   Russell, C.J. and Webster, R.G. 2005. The genesis of a pandemic influenza virus. Cell 123:368‐371.
   Salomon, R. and Webster, R.G. 2009. The influenza virus enigma. Cell 136:402‐410.
   Sambhara, S., Kurichh, A., Miranda, R., James, O., Underdown, B., Klein, M., Tartaglia, J., and Burt, D. 2001. Severe impairment of primary but not memory responses to influenza viral antigens in aged mice: Costimulation in vivo partially reverses impaired primary immune responses. Cell Immunol. 210:1‐4.
   Scheiblauer, H., Kendal, A.P., and Rott, R. 1995. Pathogenicity of influenza A/Seal/Mass/1/80 virus mutants for mammalian species. Arch. Virol. 140:341‐348.
   Schickli, J.H., Flandorfer, A., Nakaya, T., Martinez‐Sobrido, L., García‐Sastre, A., and Palese, P. 2001. Plasmid‐only rescue of influenza A virus vaccine candidates. Philos. Trans. R Soc. Lond. B Biol. Sci. 356:1965‐1973.
   Shinya, K., Makino, A., and Kawaoka, Y. 2010. Emerging and reemerging influenza virus infections. Vet. Pathol. 47:53‐57.
   Srivastava, B., Blazejewska, P., Hessmann, M., Bruder, D., Geffers, R., Mauel, S., Gruber, A.D., and Schughart, K. 2009. Host genetic background strongly influences the response to influenza a virus infections. PLoS ONE 4:e4857.
   Stuart‐Harris, C.H. 1939. A neurotropic strain of human influenza virus. Lancet 236:497‐499.
   Sun, X., Tse, L.V., Ferguson, A.D., and Whittaker, G.R. 2010. Modifications to the hemagglutinin cleavage site control the virulence of a neurotropic H1N1 influenza virus. J. Virol. 84:8683‐8690.
   Suzuki, Y. 2005. Sialobiology of influenza: Molecular mechanism of host range variation of influenza viruses. Biol. Pharm. Bull. 28:399‐408.
   Szretter, K.J., Balish, A.L., and Katz, J.M. 2006. Influenza: Propagation, quantification, and storage. Curr. Protoc. Microbiol. 3:15G.1.1‐15G.1.22.
   Toapanta, F.R. and Ross, T.M. 2009. Impaired immune responses in the lungs of aged mice following influenza infection. Respir. Res. 10:112.
   Trammell, R.A. and Toth, L.A. 2008. Genetic susceptibility and resistance to influenza infection and disease in humans and mice. Exp. Rev. Mol. Diagn. 8:515‐529.
   Tschernig, T. and Pabst, R. 2009. What is the clinical relevance of different lung compartments? BMC Pulm. Med. 9:39.
   Tumpey, T.M., Garcia‐Sastre, A., Taubenberger, J.K., Palese, P., Swayne, D.E., Pantin‐Jackwood, M.J., Schultz‐Cherry, S., Solorzano, A., Van Rooijen, N., Katz, J.M., and Basler, C.F. 2005. Pathogenicity of influenza viruses with genes from the 1918 pandemic virus: Functional roles of alveolar macrophages and neutrophils in limiting virus replication and mortality in mice. J. Virol. 79:14933‐14944.
   van Riel, D., Munster, V.J., de Wit, E., Rimmelzwaan, G.F., Fouchier, R.A., Osterhaus, A.D., and Kuiken, T. 2006. H5N1 virus attachment to lower respiratory tract. Science 312:399.
   van Riel, D., Munster, V.J., de Wit, E., Rimmelzwaan, G.F., Fouchier, R.A., Osterhaus, A.D., and Kuiken, T. 2007. Human and avian influenza viruses target different cells in the lower respiratory tract of humans and other mammals. Am. J. Pathol. 171:1215‐1223.
   Wang, T.T. and Palese, P. 2009. Unraveling the mystery of swine influenza virus. Cell 137:983‐985.
   Webster, R.G., Bean, W.J., Gorman, O.T., Chambers, T.M., and Kawaoka, Y. 1992. Evolution and ecology of influenza A viruses. Microbiol. Rev. 56:152‐179.
   Williams‐Bey, Y., Jiang, J., and Murasko, D.M. 2011. Expansion of regulatory T cells in aged mice following influenza infection. Mech. Ageing Dev. 132:163‐170.
   Wyde, P.R., Couch, R.B., Mackler, B.F., Cate, T.R., and Levy, B.M. 1977. Effects of low‐ and high‐passage influenza virus infection in normal and nude mice. Infect. Immun. 15:221‐229.
   Yetter, R.A., Lehrer, S., Ramphal, R., and Small, P.A. Jr. 1980. Outcome of influenza infection: Effect of site of initial infection and heterotypic immunity. Infect. Immun. 29:654‐662.
   Zimmermann, P., Manz, B., Haller, O., Schwemmle, M., and Kochs, G. 2011. The viral nucleoprotein determines Mx sensitivity of influenza A viruses. J. Virol. 85:8133‐8140.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library
 
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序