丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Transplantation Models to Characterize the Mechanisms of Stem Cell–Induced Islet Regeneration

互联网

9515
  • Abstract
  • Table of Contents
  • Materials
  • Figures
  • Literature Cited

Abstract

 

This unit describes our current knowledge regarding the isolation human bone marrow?derived progenitor cells for the paracrine stimulation of islet regeneration after transplantation into immunodeficient mouse models of diabetes. By using high aldehyde dehydrogenase (ALDHhi ) activity, a conserved function in multiple stem cell lineages, a mixed population of hematopoietic, endothelial, and mesenchymal progenitor cells can be efficiently purified using flow cytometry. We describe in vitro approaches to characterize and expand these distinct cell types. Importantly, these cell types can be transplanted into immunodeficient mice rendered beta?cell deficient by streptozotocin (STZ) treatment, in order monitor functional recovery from hyperglycemia and to characterize endogenous islet regeneration via paracrine mechanisms. Herein, we provide detailed protocols for: (1) isolation and characterization of ALDHhi cells for the establishment of hematopoietic and multipotent?stromal progenitor lineages; (2) intravenous and intrapancreatic transplantation of human stem cell subtypes for the quantification of glycemic recovery in STZ?treated immunodeficient mice; and (3) immunohistochemical characterization of islet recovery via the stimulation of islet neogenic, beta?cell proliferative, and islet revascularization programs. Collectively, these systems can be used to support the pre?clinical development of human progenitor cell?based therapies to treat diabetes via islet regeneration. Curr. Protoc. Stem Cell Biol . 26:2B.4.1?2B.4.35. © 2013 by John Wiley & Sons, Inc.

Keywords: aldehyde dehydrogenase; stem cells; bone marrow; transplantation; hematopoietic progenitor cells; multipotent stromal cells; islet regeneration; diabetes

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Isolation and Characterization of Bone Marrow Progenitor Cells with High Aldehyde Dehydrogenase Activity
  • Support Protocol 1: Phenotypic Analysis of ALDHhi Progenitor Cells
  • Support Protocol 2: Colony‐Forming Cell Assays and Expansion
  • Basic Protocol 2: Transplantation of ALDHhi Cells into Hyperglycemic Mice
  • Alternate Protocol 1: Intrapancreatic Transplantation of ALDHhi or ALDHlo Progenitor Cells
  • Support Protocol 3: Mouse Euthanasia and Tissue Dissection
  • Support Protocol 4: Serum Insulin Quantification Using ELISA
  • Support Protocol 5: Analysis of Human Cell Engraftment by Flow Cytometry
  • Basic Protocol 3: Immunohistochemical Analysis of Islet Regeneration
  • Support Protocol 6: Quantification of Islet Size, Islet Number, and Beta Cell Mass
  • Support Protocol 7: Analyses of Human Cell Association with Islets
  • Support Protocol 8: Analyses of Islet Blood Vessel Density
  • Support Protocol 9: Analyses of Islet Cell Proliferation
  • Support Protocol 10: Analysis of Islet Association with CK19+ Ducts
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Isolation and Characterization of Bone Marrow Progenitor Cells with High Aldehyde Dehydrogenase Activity

  Materials
  • Human bone marrow (BM) donors or BM from commercial source (Lonza)
  • Dulbecco's phosphate buffered saline (DPBS, no Ca2+ no Mg2+ ; Life Technologies, cat. no. 14190250), warmed to room temperature
  • Ficoll‐Hypaque gradient (density 1.077 g/liter; Fisher Scientific, cat. no.17144003)
  • Beckman GPR centrifuge with horizontal rotor
  • Dulbecco's phosphate‐buffered saline (DPBS, no Ca2+ no Mg2+ ; Life Technologies, cat. no. 14190250) containing 5% fetal bovine serum (FBS)
  • Ammonium chloride solution (Stem Cell Technologies, cat. no. 20110)
  • Aldefluor Kit (Stem Cell Technologies, cat. no. 01700) including:
    • Aldefluor assay buffer
    • Dry Aldefluor reagent, 50 µg
    • 2 N HCl
    • DMSO
    • DEAB reagent, 1.5 mM, in 95% ethanol
  • 15‐ and 50‐ml conical tubes (e.g., BD Falcon)
  • Beckman GPR centrifuge with horizontal rotor
  • 50‐µm PARTEC CellTrics filters (http://www.partec.com)
  • High‐speed fluorescence activated cell sorter (FACS Aria III, Becton Dickinson; also see Coligan et al., , Chapter 5)
  • Additional reagents and equipment for counting viable cells by trypan blue exclusion (unit 1.3 ) and flow cytometry (Coligan et al., , Chapter 5)

Support Protocol 1: Phenotypic Analysis of ALDHhi Progenitor Cells

  Materials
  • Dulbecco's phosphate‐buffered saline (DPBS, no Ca2+ no Mg2+ ; Life Technologies, cat. no. 14190250) containing 5% (v/v) fetal bovine serum (FBS)
  • Desired fluorescently labeled anti‐human antibodies and isotype controls (Table 2.4.1 )
  • 7‐AAD Staining Solution (BD Biosciences, cat. no. 559925)
  • 5‐ml polystyrene plastic tubes (e.g., BD Falcon)
  • Flow cytometer: FACSCalibur (Becton Dickinson)
  • FlowJo analysis software (http://flowjo.com/)
  • Additional reagents and equipment for flow cytometry (Coligan et al., , Chapter 5) and isolation of ALDHhi cells ( protocol 1 )
Table 2.0.1   MaterialsAntibody Clones, Fluorochromes, and Amounts Used to Analyze Hematopoietic Progenitor Cell Surface Marker Expression

Cocktail name Antibodies (clone, antibody, fluorochrome) Suggested concentration/tube (ng/ml)
Isotype MOPC‐21, IgG1, APC 44
  MOPC‐21, IgG1, FITC 250
  MOPC‐21, IgG1, PE 25
  7AAD 250
Progenitor 1 HI30, CD45, APC 44
  581, CD34, FITC 250
  H1T2, CD38, PE 25
  7AAD 250
Progenitor 2 HI30, CD45, APC 44
  2B8, CD117, FITC 250
  CD133, CD133, PE 25
  7AAD 250
Myeloid/monocyte HI30, CD45, APC 44
  M5E2, CD14, FITC 250
  WM53, CD33, PE 25
  7AAD 250

 

Support Protocol 2: Colony‐Forming Cell Assays and Expansion

  Materials
  • H4434 Methocult medium (StemCell Technologies, cat. no. 04434)
  • Iscove's modified Dulbecco's medium (IMDM; Invitrogen, cat. no. 12440‐046)
  • HCFC expansion medium: X‐Vivo 15 medium (Lonza, cat. no. 04‐744Q) supplemented with 10 ng/ml Flt‐3 ligand, SCF, and TPO
  • EGM2‐Bulletkit (to prepare ECFC expansion medium; Lonza, cat. no. CC‐3162) including:
    • EBM‐2 basal medium, 500 ml
    • Fetal bovine serum (FBS), 10 ml
    • Hydrocortisone, 0.2 ml
    • hFGF‐B, 2 ml
    • VEGF, 0.5 ml
    • IGF‐1, 0.5 ml
    • hEGF, 0.5 ml
    • Heparin, 0.5 ml
  • Dulbecco's phosphate‐buffered saline (DPBS, no Ca2+ no Mg2+ ; Life Technologies, cat. no. 14190250)
  • AmnioMax complete medium (MCFC expansion medium):
    • AmnioMAX C‐100 basal medium (Invitrogen, cat. no. 17001074)
    • AmnioMAX C‐100 supplement (Invitrogen, cat. no. 12556023)
  • TrypLE Express (Life Technologies)
  • 1‐ml syringes with16‐G needles
  • 12‐well suspension plates (BD Falcon, cat. no. 351143)
  • Hand tally counter (multi‐channel) for scoring colonies
  • Collagen I–coated 6‐well plates (BD Biosciences, cat no. 356400)
  • Inverted light microscope
  • 25‐ and 75‐cm2 tissue culture flasks (Corning)
  • 15‐ml conical centrifuge tubes (e.g., BD Falcon)
  • Additional reagents and equipment for obtaining ALDHlo and ALDHhi human bone marrow cells ( protocol 1 ) and counting viable cells by trypan blue exclusion (unit 1.3 )
NOTE : For the expansion of HCFC, ALDHhi cells are plated in serum‐free liquid medium (X‐Vivo 15 medium plus 10 ng/ml SCF, Flt3L, and TPO) rather than methylcellulose medium. For expansion of ECFC and MCFC use EGM‐2 Bulletkit and AmnioMax complete medium, respectively.

Basic Protocol 2: Transplantation of ALDHhi Cells into Hyperglycemic Mice

  Materials
  • Citric acid, anhydrous (Sigma, cat. no.C2404‐100G)
  • Autoclaved filter‐sterilized double‐distilled water
  • Trisodium citrate dihydrate (Sigma, cat. no. S1804)
  • 10 mM NaOH
  • NOD/SCID mice (The Jackson Laboratory)
  • Streptozotocin (STZ) (Sigma‐Aldrich, cat. no. S0130)
  • Dulbecco's phosphate‐buffered saline (DPBS, no Ca2+ , no Mg2+ ; Life Technologies, cat. no. 14190250)
  • TrypLE Express (Invitrogen, cat. no. 12604013)
  • MSC growing in culture (expanded as described in protocol 3 )
  • Dulbecco's phosphate‐buffered saline (DPBS, no Ca2+ no Mg2+ ; Life Technologies, cat. no. 14190250) containing 5% (v/v) fetal bovine serum (FBS)
  • 10 mM 5‐ethynyl‐2″‐deoxyuridine (EdU; Invitrogen, cat. no. A10044) in DPBS without Ca or Mg (store up to 1 year at –20°C)
  • 0.25 mg/ml dextrose, anhydrous (VWR, cat. no. CABDH0230‐500G): add 250 ml filter‐sterilized double‐distilled water to 62.5 g dextrose; mix until dextrose is dissolved; sterilize this solution with a 0.2‐µm syringe filter and store at room temperature
  • 600‐ml Pyrex glass beaker
  • Magnetic stirrer and stir bar
  • 0.2‐µm sterile syringe filters
  • Animal balance
  • Insulin syringes with 28‐G needles (Fisher Scientific, cat. no. 14‐829‐1B)
  • FreeStyle blood glucose test strips and glucose monitor (Abbott Diabetes Inc., http://www.abbottdiabetescare.com/)
  • Inverted light microscope
  • Gammacell 40 137 Cs irradiator (MDS Nordion, http://www.nordion.com)
  • Syringes with 30‐G needles for tail venipuncture
  • Beckman GPR centrifuge with horizontal rotor
  • Additional reagents and equipment for injection of mice (Donovan and Brown, ), obtaining ALDHlo and ALDHhi human bone marrow cells ( protocol 1 ), and counting viable cells by trypan blue exclusion (unit 1.3 )

Alternate Protocol 1: Intrapancreatic Transplantation of ALDHhi or ALDHlo Progenitor Cells

  Materials
  • Isoflurane
  • Oxygen (O 2 )
  • Eye lubricant (Allergan Refresh Lacrilube, http://www.allergan.com/)
  • Buprenorphine: purchased from the Western University animal care and veterinary services facility as a stock solution of 0.3 mg/ml; the stock is then diluted in normal saline to a 0.012 mg/ml working solution (both the stock and the working solution are stored at room temperature)
  • Ketoprofen
  • Hair removal cream (Nair)
  • Bacteriostatic soap
  • Isopropyl alcohol
  • Betadine solution
  • ALDHlo cells or ALDHhi cells ( protocol 1 )
  • Dulbecco's phosphate buffered saline (DPBS, no Ca2+ no Mg2+ ; Life Technologies, cat. no. 14190250)
  • Vetbond tissue adhesive
  • Mobile laboratory animal anesthesia system (VetEquip, cat. no. 901807), including nose cones
  • Electric hair clippers
  • Gauze
  • Sterile cotton tipped applicators
  • Surgical scissors and forceps
  • Microinjection syringes (Becton Dickinson Ultra Fine II, 0.5 ml, 30‐G, cat. no. 320468)
  • 5‐0 silk sutures
NOTE : Perform 42‐day in vivo protocol as described in protocol 4 . The following alternate protocol explains an adapted transplantation procedure on day 10 only.NOTE : For additional details and photographs of the intrapancreatic injection surgical procedures please refer to Figure .

Support Protocol 3: Mouse Euthanasia and Tissue Dissection

  Materials
  • Mice that have been subjected to EdU injection and glucose tolerance test ( protocol 4 )
  • Dulbecco's phosphate‐buffered saline (DPBS, no Ca2+ no Mg2+ ; Life Technologies, cat. no. 14190250) containing 5% (v/v) fetal bovine serum (FBS)
  • Isoflurane, USP (Baxter)
  • Optimal cutting temperature (OCT) compound (Fisher Scientific, cat. no. 1437365)
  • Dry ice
  • 5‐ml polystyrene tubes
  • 15 mm × 15 mm tissue molds (Fisher Scientific, cat. no.22038217)
  • Gauze
  • Nalgene jar with cover (Thermo Scientific, cat. no. 5352‐0004)
  • Sterile 1‐ml syringe and 23‐G needle
  • Forceps
  • Dissection scissors
  • AB135‐S/FACT scale (Mettler Toledo)
  • IEC CL31 multispeed centrifuge Classic Plus (Thermo Scientific)
  • 40‐µm cell strainers
  • Additional reagents and equipment for euthanasia of mice (Donovan and Brown, )

Support Protocol 4: Serum Insulin Quantification Using ELISA

  Materials
  • Insulin (mouse) ultrasensitive EIA (ALPCO, cat. no. 80‐INSMSU‐E01, http://www.alpco.com/):
    • Insulin microplate
    • Zero standard (0 ng/ml)
    • Insulin standards (0.025, 0.063, 0.188, 0.5, 1.25, 3.75, 6.9 ng/ml)
    • Mammalian insulin high and low controls
    • Conjugate (11× HRP‐labeled monoclonal anti‐insulin antibody)
    • Conjugate buffer
    • Wash buffer (21×)
    • TMB substrate
    • Stop solution
    • Plate sealer
  • Serum samples ( protocol 6 , step 8)
  • Plate shaker
  • Wash bottle
  • Microplate reader (Multiskan Ascent from Thermo Scientific)
  • Ascent software (Thermo Scientific)
NOTE : The following protocol has been modified from the manufacturer's instructions to utilize a wider range of standards.

Support Protocol 5: Analysis of Human Cell Engraftment by Flow Cytometry

  Materials
  • Mechanically triturated pancreas cells ( protocol 6 , step 9)
  • Fluorescently labeled antibodies:
    • FITC‐labeled anti‐human CD45 antibody (4 µl/200 µl cells; BD Biosciences, cat. no. 555482)
    • PE‐labeled anti‐human HLA‐A,B,C antibody (4 µl/200 µl cells; BD Biosciences, cat. no. 555553)
    • Mouse IgG1 FITC antibody (4 µl/200 µl cells; BD Biosciences, cat. no. 555748)
    • Mouse IgG1 PE antibody (4 µl/200 µl cells; BD Biosciences, cat. No. 555749)
  • Dulbecco's phosphate‐buffered saline (DPBS, no Ca2+ no Mg2+ ; Life Technologies, cat. no. 14190250) containing 5% fetal bovine serum (FBS)
  • 7‐AAD (5 µl/200 µl cells; BD Biosciences, cat. no. 559925)
  • 5‐ml polystyrene tubes
  • Centrifuge with horizontal rotor (Beckman)
  • BD FACSCalibur flow cytometer (BD Biosciences; also see Coligan et al., , Chapter 5)
  • FlowJo analysis software (http://flowjo.com/)
  • Additional reagents and equipment for flow cytometry ( protocol 2 ; also see Coligan et al., , Chapter 5)

Basic Protocol 3: Immunohistochemical Analysis of Islet Regeneration

  Materials
  • OCT‐embedded pancreatic tissue block ( protocol 6 )
  • 10% formalin (Fisher Scientific, cat. no. SF98‐4)
  • Dulbecco's phosphate‐buffered saline (DPBS, no Ca2+ no Mg2+ ; Life Technologies, cat. no. 14190250)
  • 1% permeabilization buffer: DPBS (no Ca or Mg) containing 1% (v/v) Triton X‐100
  • SuperFrost Plus glass slides (Menzel‐Gläser; http://www.menzel.de/)
  • Leica CM1850 cryostat
  • Microtome blades
  • Vacuum flask
  • Fine‐tip black marker

Support Protocol 6: Quantification of Islet Size, Islet Number, and Beta Cell Mass

  Materials
  • Fixed and permeabilized pancreas tissue slides ( protocol 9 )
  • Peroxidase blocking solution: DPBS (no Ca or Mg; Life Technologies, cat. no. 14190250) containing 0.3% hydrogen peroxide (final) and 0.1% FBS
  • Dulbecco's phosphate‐buffered saline (DPBS, no Ca2+ no Mg2+ ; Life Technologies, cat. no. 14190250)
  • Mouse on mouse (M.O.M.) basic kit (Vector Labs, cat. no. BMK‐2202) including:
    • M.O.M. mouse IgG blocking reagent
    • M.O.M. diluent
    • M.O.M. protein concentrate
  • Monoclonal anti‐insulin antibody (Sigma, cat. no. I2018)
  • Horse anti‐mouse IgG antibody, peroxidase‐labeled (Vector Labs, cat. no. PI‐2007)
  • ImmPACT DAB peroxidase substrate (Vector Labs, cat. no. SK‐4105)
  • Hematoxylin QS (Vector Labs, cat. no. H‐3404)
  • VectaMount mounting medium (Vector Labs, cat. no. H5000)
  • Slide rack
  • Plate shaker
  • Glass coverslips
  • AxioScope Z2 light microscope (Zeiss)
  • Northern Eclipse software (EMPIX, http://www.empix.com/)
  • AxioVision 4.7.2 Software (Zeiss)

Support Protocol 7: Analyses of Human Cell Association with Islets

  Materials
  • Fixed and permeabilized pancreas tissue slides ( protocol 9 )
  • Mouse on mouse (M.O.M.) basic kit (Vector Labs, cat. no. BMK‐2202) including:
    • M.O.M. mouse IgG blocking reagent
    • M.O.M. diluent
    • M.O.M. protein concentrate
  • Dulbecco's phosphate‐buffered saline (DPBS, no Ca2+ no Mg2+ ; Life Technologies, cat. no. 14190250)
  • Mouse anti‐human HLA‐A,B,C antibody (BD Biosciences, cat. no. 555551)
  • Horse anti‐mouse IgG fluorescein antibody (Vector Labs, cat. no. FI‐2000)
  • Goat blocking buffer: 2.5 ml goat serum (Vector Labs, cat. no. S 1000) in 47.5 ml DPBS without Ca or Mg), prepared in advance
  • Rabbit anti‐mouse insulin antibody (Santa Cruz Biotechnology, cat. no. sc‐9168)
  • Goat anti‐rabbit Texas Red IgG antibody (Vector Labs, cat. no. TI‐1000)
  • Vectashield mounting medium with DAPI (Vector Labs, cat. no. H‐1200)
  • Clear nail polish
  • Slide rack
  • Plate shaker
  • Glass coverslips
  • Slide box
  • AxioScope Z2 light microscope (Zeiss)
  • AxioVision 4.7.2 Software (Zeiss)

Support Protocol 8: Analyses of Islet Blood Vessel Density

  Materials
  • Fixed and permeabilized pancreas tissue slides ( protocol 9 )
  • Mouse on mouse (M.O.M.) basic kit (Vector Labs, cat. no. BMK‐2202) including:
    • M.O.M. mouse IgG blocking reagent
    • M.O.M. diluent
    • M.O.M. protein concentrate
  • Monoclonal anti‐insulin antibody (Sigma, cat. no. I2018)
  • Dulbecco's phosphate‐buffered saline (DPBS, no Ca2+ no Mg2+ ; Life Technologies, cat. no. 14190250)
  • Horse anti‐mouse IgG Texas Red antibody (Vector Labs, cat. no. TI‐2000)
  • Goat blocking buffer: 2.5 ml goat serum (Vector Labs, cat. no. S 1000) in 47.5 ml DPBS without Ca or Mg or rabbit blocking buffer: 2.5 ml rabbit serum (Vector Labs, cat. no. S 5000) in 47.5 ml DPBS without Ca or Mg), prepared in advance
  • Rabbit anti‐mouse vWF antibody (Santa Cruz Biotechnology, cat. no. sc‐14014) or rat anti‐mouse CD31 antibody (BD Biosciences, cat no. 550274)
  • Goat anti‐rabbit IgG fluorescein antibody (Vector Labs, cat. no. FI‐1000) or rabbit anti‐rat IgG fluorescein antibody (Vector Labs, cat. no. FI‐4000)
  • Vectashield mounting medium with DAPI (Vector Labs, cat. no. H‐1200)
  • Clear nail polish
  • Slide rack
  • Slide box
  • AxioScope Z2 light microscope (Zeiss)
  • AxioVision 4.7.2 Software (Zeiss)

Support Protocol 9: Analyses of Islet Cell Proliferation

  Materials
  • Click‐iT EdU Imaging Kit (Life Technologies, cat. no. C10337) including:
    • 5‐ethynyl‐2″‐deoxyuridine (EdU)
    • Alexa Fluor 488 azide
    • Dimethylsulfoxide (DMSO)
    • Click‐iT EdU reaction buffer
    • Copper sulfate (CuSO 4 )
    • Click‐iT EdU buffer additive
  • Fixed and permeabilized pancreas tissue slides ( protocol 9 )
  • Vectashield mounting medium with DAPI (Vector Labs, cat. no. H‐1200)
  • Clear nail polish
  • Slide rack
  • Glass coverslips
  • AxioScope Z2 light microscope (Zeiss)
  • AxioVision 4.7.2 Software (Zeiss)

Support Protocol 10: Analysis of Islet Association with CK19+ Ducts

  Materials
  • Fixed and permeabilized pancreas tissue slides ( protocol 9 )
  • Mouse on mouse (M.O.M.) basic kit (Vector Labs, cat. no. BMK‐2202) including:
    • M.O.M. mouse IgG blocking reagent
    • M.O.M. diluent
    • M.O.M. protein concentrate
  • Monoclonal anti‐insulin antibody (Sigma, cat. no. I2018)
  • Dulbecco's phosphate‐buffered saline (DPBS, no Ca2+ no Mg2+ ; Life Technologies, cat. no. 14190250)
  • Horse anti‐mouse IgG Texas Red antibody (Vector Labs, cat. no. TI‐2000)
  • Goat blocking buffer: 2.5 ml goat serum (Vector Labs, cat. no. S 1000) in 47.5 ml DPBS without Ca or Mg
  • Rabbit anti‐mouse CK19 antibody (Abcam, cat. no. ab‐15463)
  • Goat anti‐rabbit IgG fluorescein antibody (Vector Labs, cat. no. FI‐1000)
  • Vectashield mounting medium with DAPI (Vector Labs, cat. no. H‐1200)
  • Clear nail polish
  • Slide rack
  • Glass coverslips
  • AxioScope Z2 light microscope (Zeiss)
  • AxioVision 4.7.2 Software (Zeiss)
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   Figure 2.B0.1 Schematic representation for the isolation and characterization of bone marrow–derived ALDHhi mixed progenitor cells. Human bone marrow mononuclear cells (MNC) are isolated by Ficoll‐Hypaque centrifugation, and incubated with Aldefluor reagent. Using fluorescence activated cell sorting, MNC are purified into ALDHlo cell and ALDHhi cell populations based on relative ALDH activity. Cell‐surface phenotype is analyzed by flow cytometry, and clonal colony‐forming unit assays are performed to calculate relative frequency of hematopoietic, endothelial, or mesenchymal progenitor cells. ALDHhi progenitor cells can be expanded efficiently in lineage‐specific culture. ALDHhi mixed progenitor cells or their expanded progeny can then be transplanted into the tail vein or into the pancreas of hyperglycemic NOD/SCID mice to assess their capacity to stimulate endogenous islet regeneration.
    View Image
  •   Figure 2.B0.2 In vivo model of human progenitor cell–stimulated beta cell regeneration after transplantation into hyperglycemic mice. NOD/SCID mice are intraperitoneally injected with 35 mg/kg streptozotocin (STZ) from days 1 to 5 to induce beta‐cell deletion and subsequent hyperglycemia. On day 10, mice with systemic blood glucose levels between 15 and 25 mmol/liter are sublethally irradiated (300 cGy) and transplanted with human bone marrow–derived progenitor cells. Blood glucose concentrations are monitored weekly for 42 days. At a time point 24 hr prior to euthanasia, mice are intraperitoneally injected with 200 µg EdU to label dividing cells, and a fasted glucose tolerance test is performed. On day 42, murine blood is collected by cardiac puncture and serum is separated by centrifugation and cryopreserved for serum insulin quantification by ELISA. Following euthanasia, bone marrow is collected for flow cytometry, while the spleen and pancreas are collected and segmented for the analysis of human cell engraftment by flow cytometry, or frozen in O.C.T. (Optimal Cutting Temperature) compound for subsequent sectioning and immunohistochemical analysis.
    View Image
  •   Figure 2.B0.3 Intrapancreatic transplantation surgery. Representative photographs and step‐by‐step description of the intrapancreatic transplantation procedure.
    View Image
  •   Figure 2.B0.4 Immunohistochemical analysis of islet regeneration. Human progenitor cell–transplanted NOD/SCID mice are euthanized, and the splenic portion of the pancreas frozen in OCT. Using a cryostat, the pancreas is sectioned into 10‐µm sections, with three sections (150 µm apart) per glass slide. Pancreatic tissue sections are analyzed for: islet size, islet number, and beta cell mass (staining for insulin); human cell engraftment (co‐staining for HLA‐A,B,C and insulin); islet vascularization (co‐staining for insulin and vWF or CD31); beta cell proliferation (co‐staining for insulin and EdU); and islet location (co‐staining for insulin and CK19).
    View Image

Videos

Literature Cited

   Assady, S., Maor, G., Amit, M., Itskovitz‐Eldor, J., Skorecki, K.L., and Tzukerman, M. 2001. Insulin production by human embryonic stem cells. Diabetes 50:1691‐1697.
   Bell, G.I., Meschino, M.T., Hughes‐Large, J.M., Broughton, H.C., Xenocostas, A., and Hess, D.A. 2012a. Combinatorial human progenitor cell transplantation optimizes islet regeneration through secretion of paracrine factors. Stem Cells Dev. 21:1863‐1876.
   Bell, G.I., Broughton, H.C., Levac, K.D., Allan, D.A., Xenocostas, A., and Hess, D.A. 2012b. Transplanted human bone marrow progenitor subtypes stimulate endogenous islet regeneration and revascularization. Stem Cells Dev. 21:97‐109.
   Bell, G.I., Putman, D.M., Hughes‐Large, J.M., and Hess, D.A. 2012c. Intrapancreatic delivery of human umbilical cord blood aldehyde dehydrogenase‐producing cells promotes islet regeneration. Diabetologia 55:1755‐1760.
   Bonner‐Weir, S., Baxter, L.A., Schuppin, G.T., and Smith, F.E. 1993. A second pathway for regeneration of adult exocrine and endocrine pancreas. A possible recapitulation of embryonic development. Diabetes 42:1715‐1720.
   Bonner‐Weir, S. and Weir, G.C. 2005. New sources of pancreatic beta‐cells. Nat. Biotechnol. 23:857‐861.
   Capoccia, B.J., Robson, D.L., Levac, K.D., Maxwell, D.J., Hohm, S.A., Neelamkavil, M.J., Bell, G.I., Xenocostas, A., Link, D.C., Piwnica‐Worms, D., Nolta, J.A., and Hess, D.A. 2009. Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood 113:5340‐5351.
   Ciceri, F. and Piemonti, L. 2012. Bone marrow and pancreatic islets: An old story with new perspectives. Cell Transplant. 19:1511‐1522.
   Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M., and Strober, W. (eds.). 2013. Current Protocols in Immunology. John Wiley & Sons, New York.
   D'Amour, K.A., Agulnick, A.D., Eliazer, S., Kelly, O.G., Kroon, E., and Baetge, E.E. 2005. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23:1534‐1541.
   D'Amour, K.A., Bang, A.G., Eliazer, S., Kelly, O.G., Agulnick, A.D., Smart, N.G., Moorman, M.A., Kroon, E., Carpenter, M.K., and Baetge, E.E. 2006. Production of pancreatic hormone–expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24:1392‐1401.
   Donovan, J. and Brown, P. 2006a. Parenteral injections. Curr. Protoc. Immunol. 73:1.6.1‐1.6.10.
   Donovan, J. and Brown, P. 2006b. Euthanasia. Curr. Protoc. Immunol. 73:1.8.1‐1.8.4.
   Dor, Y., Brown, J., Martinez, O.I., and Melton, D.A. 2004. Adult pancreatic beta‐cells are formed by self‐duplication rather than stem‐cell differentiation. Nature 429:41‐46.
   Hakonen, E., Ustinov, J., Mathijs, I., Palgi, J., Bouwens, L., Miettinen, P.J., and Otonkoski, T. 2011. Epidermal growth factor (EGF)‐receptor signalling is needed for murine beta cell mass expansion in response to high‐fat diet and pregnancy but not after pancreatic duct ligation. Diabetologia 54:1735‐1743.
   Halban, P.A., German, M.S., Kahn, S.E., and Weir, G.C. 2012. Current status of islet cell replacement and regeneration therapy. J. Clin. Endocrinol. Metab. 95:1034‐1043.
   Haller, M.J., Wasserfall, C.H., Hulme, M.A., Cintron, M., Brusko, T.M., McGrail, K.M., Sumrall, T.M., Wingard, J.R., Theriaque, D.W., Shuster, J.J., Atkinson, M.A., and Schatz, D.A. 2011. Autologous umbilical cord blood transfusion in young children with type 1 diabetes fails to preserve C‐peptide. Diabetes Care 34:2567‐2569.
   Hathout, E., Lakey, J., and Shapiro, J. 2003. Islet transplant: An option for childhood diabetes? Arch. Dis. Child. 88:591‐594.
   Hess, D., Li, L., Martin, M., Sakano, S., Hill, D., Strutt, B., Thyssen, S., Gray, D.A., and Bhatia, M. 2003. Bone marrow‐derived stem cells initiate pancreatic regeneration. Nat. Biotechnol. 21:763‐770.
   Hess, D.A., Meyerrose, T.E., Wirthlin, L., Craft, T.P., Herrbrich, P.E., Creer, M.H., and Nolta, J.A. 2004. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood 104:1648‐1655.
   Hess, D.A., Wirthlin, L., Craft, T.P., Herrbrich, P.E., Hohm, S.A., Lahey, R., Eades, W.C., Creer, M.H., and Nolta, J.A. 2006. Selection based on CD133 and high aldehyde dehydrogenase activity isolates long‐term reconstituting human hematopoietic stem cells. Blood 107:2162‐2169.
   Inada, A., Nienaber, C., Katsuta, H., Fujitani, Y., Levine, J., Morita, R., Sharma, A., and Bonner‐Weir, S. 2008. Carbonic anhydrase II‐positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc. Natl. Acad. Sci. U.S.A. 105:19915‐19919.
   Juhl, K., Bonner‐Weir, S., and Sharma, A. 2012. Regenerating pancreatic beta‐cells: Plasticity of adult pancreatic cells and the feasibility of in‐vivo neogenesis. Curr. Opin. Organ Transplant. 15:79‐85.
   Kaczorowski, D.J., Patterson, E.S., Jastromb, W.E., and Shamblott, M.J. 2002. Glucose‐responsive insulin‐producing cells from stem cells. Diabetes Metab. Res. Rev. 18:442‐450.
   Keenan, H.A., Sun, J.K., Levine, J., Doria, A., Aiello, L.P., Eisenbarth, G., Bonner‐Weir, S., and King, G.L. 2011. Residual insulin production and pancreatic ss‐cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes 59:2846‐2853.
   Kim, H., Toyofuku, Y., Lynn, F.C., Chak, E., Uchida, T., Mizukami, H., Fujitani, Y., Kawamori, R., Miyatsuka, T., Kosaka, Y., Yang, K., Honig, G., van der Hart, M., Kishimoto, N., Wang, J., Yagihashi, S., Tecott, L.H., Watada, H., and German, M.S. 2010. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat. Med. 16:804‐808.
   Kondo, M., Wagers, A.J., Manz, M.G., Prohaska, S.S., Scherer, D.C., Beilhack, G.F., Shizuru, J.A., and Weissman, I.L. 2003. Biology of hematopoietic stem cells and progenitors: Implications for clinical application. Annu. Rev. Immunol. 21:759‐806.
   Kroon, E., Martinson, L.A., Kadoya, K., Bang, A.G., Kelly, O.G., Eliazer, S., Young, H., Richardson, M., Smart, N.G., Cunningham, J., Agulnick, A.D., D'Amour, K.A., Carpenter, M.K., and Baetge, E.E. 2008. Pancreatic endoderm derived from human embryonic stem cells generates glucose‐responsive insulin‐secreting cells in vivo. Nat. Biotechnol. 26:443‐452.
   Lee, R.H., Seo, M.J., Reger, R.L., Spees, J.L., Pulin, A.A., Olson, S.D., and Prockop, D.J. 2006. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc. Natl. Acad. Sci. U.S.A. 103:17438‐17443.
   Nostro, M.C., Sarangi, F., Ogawa, S., Holtzinger, A., Corneo, B., Li, X., Micallef, S.J., Park, I.H., Basford, C., Wheeler, M.B., Daley, G.Q., Elefanty, A.G., Stanley, E.G., and Keller, G. 2011. Stage‐specific signaling through TGFbeta family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development 138:861‐871.
   Oberholzer, J., Shapiro, A.M., Lakey, J.R., Ryan, E.A., Rajotte, R.V., Korbutt, G.S., Morel, P., and Kneteman, N.M. 2003. Current status of islet cell transplantation. Adv. Surg. 37:253‐282.
   Prockop, D.J. 1997. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71‐74.
   Putman, D.M., Liu, K.Y., Broughton, H.C., Bell, G.I., and Hess, D.A. 2012. Umbilical cord blood‐derived aldehyde dehydrogenase‐expressing progenitor cells promote recovery from acute ischemic injury. Stem Cells 30:2248‐2260.
   Rieck, S. and Kaestner, K.H. 2010. Expansion of beta‐cell mass in response to pregnancy. Trends Endocrinol. Metab. 21:151‐158.
   Shapiro, A.M., Lakey, J.R., Ryan, E.A., Korbutt, G.S., Toth, E., Warnock, G.L., Kneteman, N.M., and Rajotte, R.V. 2000. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid‐free immunosuppressive regimen. N. Engl. J. Med. 343:230‐238.
   Shapiro, A.M., Ryan, E.A., and Lakey, J.R. 2001. Diabetes. Islet cell transplantation. Lancet 358 Suppl:S21.
   Snarski, E., Milczarczyk, A., Torosian, T., Paluszewska, M., Urbanowska, E., Krol, M., Boguradzki, P., Jedynasty, K., Franek, E., and Wiktor‐Jedrzejczak, W. 2011. Independence of exogenous insulin following immunoablation and stem cell reconstitution in newly diagnosed diabetes type I. Bone Marrow Transplant. 46:562‐566.
   Storms, R.W., Trujillo, A.P., Springer, J.B., Shah, L., Colvin, O.M., Ludeman, S.M., and Smith, C. 1999. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc. Natl. Acad. Sci. U.S.A. 96:9118‐9123.
   Storms, R.W., Green, P.D., Safford, K.M., Niedzwiecki, D., Cogle, C.R., Colvin, O.M., Chao, N.J., Rice, H.E., and Smith C.A. 2005. Distinct hematopoietic progenitor compartments are delineated by the expression of aldehyde dehydrogenase and CD34. Blood 106:95‐102.
   Urban, V.S., Kiss, J., Kovacs, J., Gocza, E., Vas, V., Monostori, E., and Uher, F. 2008. Mesenchymal stem cells cooperate with bone marrow cells in therapy of diabetes. Stem Cells 26:244‐253.
   Xu, X., D'Hoker, J., Stange, G., Bonne, S., De Leu, N., Xiao, X., Van de Casteele, M., Mellitzer, G., Ling, Z., Pipeleers, D., Bouwens, L., Scharfmann, R., Gradwohl, G., and Heimberg, H. 2008. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132:197‐207.
   Zhang, C., Todorov, I., Lin, C.L., Atkinson, M., Kandeel, F., Forman, S., and Zeng, D. 2007. Elimination of insulitis and augmentation of islet beta cell regeneration via induction of chimerism in overtly diabetic NOD mice. Proc. Natl. Acad. Sci. U.S.A. 104:2337‐2342.
   Zhao, Y., Jiang, Z., Zhao, T., Ye, M., Hu, C., Yin, Z., Li, H., Zhang, Y., Diao, Y., Li, Y., Chen, Y., Sun, X., Fisk, M.B., Skidgel, R., Holterman, M., Prabhakar, B., and Mazzone, T. 2012. Reversal of type 1 diabetes via islet beta cell regeneration following immune modulation by cord blood‐derived multipotent stem cells. BMC Med. 10:3.
Key References
   Bell et al., 2012a. See above.
   This paper demonstrates that sequential transplantation of MSC followed by ALDHhi cells improved hyperglycemia and glucose tolerance by increasing beta cell mass via stimulation of islet‐regenerative and revascularization program
   Bell et al., 2012b. See above.
   This paper demonstrates that endogenous islet recovery after progenitor cell transplantation can occur via islet proliferative and neogenic mechanisms modulated by subtypes of progenitor cells administered.
   Bell et al., 2012c. See above.
   This paper demonstrates that intra‐pancreatic delivery of umbilical cord blood‐derived ALDHhi cells potentiated islet‐associated cell proliferation and revascularization, resulting in the recovery of host islet function.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library
 
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序