Until now, for most of the neurodegenerative diseases, such as Alzheimer’s disease (AD), ideal animal systems do not exist. Hence, cell-biological experiments, which would help to elucidate the degenerative processes, cannot be performed with affected tissue. On the other hand, biopsy-derived human brain tissue from patients, as an alternative source for living cell material, is rare and, in autopsy-derived tissue, neuronal cells are generally already dead, before any experiments can be performed. There is evidence that peripheral tissue also expresses pathophysiological mechanisms relevant for brain dysfunction, and there are many reports dealing with disease-related abnormalities in the physiology of fibroblasts of AD patients (1 ,2 ). The advantage of using autopsyderived fibroblasts from deceased patients is that both the validity of the clinical diagnoses and the severity of neuropathological changes can be assessed reliably by subsequent histological investigations of the brain (3 ).