丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Learning Global Models of Transcriptional Regulatory Networks from Data

互联网

381
Organisms must continually adapt to changing cellular and environmental factors (e.g., oxygen levels) by altering their gene expression patterns. At the same time, all organisms must have stable gene expression patterns that are robust to small fluctuations in environmental factors and genetic variation. Learning and characterizing the structure and dynamics of Regulatory Networks (RNs ), on a whole-genome scale, is a key problem in systems biology. Here, we review the challenges associated with inferring RNs in a solely data-driven manner, concisely discuss the implications and contingencies of possible procedures that can be used, specifically focusing on one such procedure, the Inferelator . Importantly, the Inferelator explicitly models the temporal component of regulation, can learn the interactions between transcription factors and environmental factors, and attaches a statistically meaningful weight to every edge. The result of the Inferelator is a dynamical model of the RN that can be used to model the time-evolution of cell state.
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序