丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Scanning Fluorescence Correlation Spectroscopy in Model Membrane Systems

互联网

538
Fluorescence correlation spectroscopy (FCS) is an emerging technique employed in biophysical studies that exploits the temporal autocorrelation of fluorescence intensity fluctuations measured in a tiny volume (in the order of fL). The autocorrelation curve derived from the fluctuations can then be fitted with diffusion models to obtain parameters such as diffusion time and number of particles in the diffusion volume/area. Application of FCS to membranes allows studying membrane component dynamics, which includes mobility and interactions between the components. However, FCS encounters several difficulties like accurate positioning and stability of the setup when applied to membranes.
Here, we describe the theoretical basis of point FCS as well as the scanning FCS (SFCS) approach, which is a practical way to address the challenges of FCS with membranes. We also list materials necessary for FCS experiments on two model membrane systems: (1) supported lipid bilayers and (2) giant unilamellar vesicles. Finally, we present simple protocols for the preparation of these model membrane systems, calibration of the microscope setup for FCS, and acquisition and analysis of point FCS and SFCS data so that diffusion coefficients and concentrations of fluorescent probes within lipid membranes can be calculated.
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序