Applicator and Electrode Design for In Vivo DNA Delivery by Electroporation
互联网
307
As in vivo electroporation advances from the preclinical phase to clinical studies and eventually to routine medical practice, the design of electroporation devices becomes increasingly important. Achieving safety and efficacy levels that meet regulatory requirements, as well as user and patient friendliness, are major design considerations. In addition, the devices will have to be economical to manufacture. This chapter will focus on the design of applicators and electrodes, the pieces of hardware in direct contact with the user and the patient, and thus key elements responsible for the safety and efficacy of the procedure. The two major foreseeable applications of the technology in the DNA field are for gene therapy and DNA vaccination. Design requirements differ considerably for these applications and for the diseases to be treated or prevented. In addition to the trend of device differentiation, there is also a trend to build devices capable of performing both the step of delivering the DNA to the target tissue and the subsequent step of electroporation. This chapter presents the electrical and biological principles underlying applicator and electrode design, gives an overview of existing devices, and discusses their advantages and disadvantages. The chapter also outlines major design considerations, including regulatory pathways, and points out potential future developments.