The field of stem cell biology and regenerative medicine is rapidly moving toward translation to clinical practice, and in doing so has become more dependent on animal donors and hosts for generating cellular reagents and assaying their potential therapeutic efficacy in models of human disease. Animal models of cardiovascular disease have proved critically important for the discovery of pathophysiological mechanisms and for the advancement of diagnosis and therapy. They offer a number of advantages; principally the availability of adequate healthy controls and the absence of confounding factors such as marked differences in age, concomitant pathologies, and pharmacological treatments. Over the past 30 years, investigators have developed numerous small and large animal models to study heart failure (HF). However, to translate discoveries from basic science into medical applications, research in large animal models becomes a necessary step. Intracoronary microembolizations-induced HF in dogs is an excellent large animal model of congestive HF for the assessment of pharmacological drugs, medical devices, and stem cells.