丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Plasmon-Waveguide Resonance Spectroscopy Studies of Lateral Segregation in Solid-Supported Proteolipid Bilayers

互联网

439
Plasmon-waveguide resonance (PWR) spectroscopy is a high-sensitivity optical method for characterizing thin films immobilized onto the outer surface of a glass prism coated with thin films of a metal (e.g., silver) and a dielectric (e.g., silica). Resonance excitation by a polarized continuous wave (CW) laser above the critical angle for total internal reflection generates plasmon and waveguide modes, whose evanescent electromagnetic fields are localized on the outer surface and interact with the immobilized sample (in the present case a proteolipid bilayer). Plots of reflected light intensity vs the incident angle of the exciting light constitute a PWR spectrum, whose properties are determined by the refractive index (n ), the thickness (t ), and the optical extinction at the exciting wavelength (k ) of the sample. Plasmon excitation can occur using light polarized both perpendicular (p ) and parallel (s ) to the plane of the resonator surface, allowing characterization of the structural properties of uniaxially oriented proteolipid films deposited on the surface. As will be demonstrated in what follows, PWR spectroscopy provides a powerful tool for directly observing in real-time microdomain formation (rafts) in such bilayers owing to lateral segregation of both lipids and proteins. In favorable cases, protein trafficking can also be monitored. Spectral simulation using Maxwell’s equations allows these raft domains to be characterized in terms of their mass densities and thicknesses.
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序