基因表达参考文献
互联网
1• 边肇祺,张学工等 .2000 年 . 模式识别(第二版) . 清华大学出版社 . 北京 .
2• 傅京孙 . 1990 . 模式识别应用 . 北京大学出版社 . 北京 .
3• 陆汝钤 . 1996. 人工智能 . 科学出版社 . 北京 .
4• 徐克学 . 1999. 生物数学 . 科学技术出版社 .
5• Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson J, Jr., Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO and Staudt LM. 2000. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403(6769): 503-11.
6• Allocco DJ, Kohane IS and Butte AJ. 2004. Quantifying the relationship between co-expression, co-regulation and gene function. BMC Bioinformatics, 5(1): 18.
7• Akutsu T, Kuhara S, Maruyama O, Miyano S. 1998. A System for Identifying Genetic Networks from Gene Expression Patterns Produced by Gene Disruptions and Overexpressions. Genome Inform Ser Workshop Genome Inform , 9:151-160.
8• Akutsu T, Kuhara S. Maruyama O, Miyano S. 1998. Identification of gene regulatory networks by strategic disruptions and gene overexpressions. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, California , 695-702.
9• Akutsu T, Miyano S, Kuhara S. 1999. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac Symp Biocomput , 17-28.
10• Bader GD, Hogue CW. 2000. BIND--a data specification for storing and describing biomolecular interactions, molecular complexes and pathways. Bioinformatics, 16(5):465-77.
11• Baldi P and Brunak S.2001.Bioinformatics: the Machine Learning Approach.MIT Press.
12• Bar-Joseph Z, Gerber G, Simon I, Gifford DK and Jaakkola TS. 2003. Comparing the continuous representation of time-series expression profiles to identify differentially expressed genes. Proc Natl Acad Sci U S A, 100(18): 10146-51.
13• Bar-Joseph Z, Gerber GK, Lee TI, Rinaldi NJ, Yoo JY, Robert F, Gordon DB, Fraenkel E, Jaakkola TS, Young RA and Gifford DK. 2003. Computational discovery of gene modules and regulatory networks. Nat Biotechnol, 21(11): 1337-42.
14• Ben-Dor A, Bruhn L, Friedman N, Nachman I, Schummer M and Yakhini Z. 2000. Tissue classification with gene expression profiles. J Comput Biol, 7(3-4): 559-83.
15• Berry MJA, Linoff G, 1997. Dada mining techniques for marketing, sales and customer support, John Wiley & Sons New York.
16• Bittner M, Meltzer P and Trent J. 1999. Data analysis and integration: of steps and arrows. Nat Genet, 22(3): 213-5.
17• Boguski MS. 1998. Data management and analysis for gene expression arrays. Nat. Genet., 20:1923.
18• Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V, Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J and Vingron M. 2001. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet, 29(4): 365-71.
19• Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares M, Jr. and Haussler D. 2000. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci U S A, 97(1): 262-7.
20• Bussemaker HJ, Li H, Siggia ED. 2000 . Building a dictionary for genomes: identification of presumptive regulatory sites by statistical analysis. Proc Natl Acad Sci USA , 97(18): 10096-10100.
21• Butte A. 2002. The use and analysis of microarray data. Nat Rev Drug Discov, 1(12): 951-60.
22• Butte AJ. 2001. Challenges in bioinformatics: infrastructure, models and analytics. Trends Biotechnol, 19(5): 159-60.
23• Butte AJ, Kohane IS. 2000. Mutual Information Relevance Networks: Functional Genomic Clustering Using Pairwise Entropy Measurements, Pacific Symposium on Biocomputing, 5:415-426.
24• Carr DB, Somogyi R, Michaels G. 1997. Templates for looking at gene expression clustering, Statistical Computing and Graphics Newsletter, 8:20 -29.
25• Chen MS, Han HW, Yu PS. 1996. Data mining: an overview from a database perspective. IEEE Trans Knowledge and Data Engineering, 866-883.
26• Chen T, He HL, Church GM. 1999. Modeling gene expression with differential equations. Pacific Symp. Biocomp. 4:2940.
27• Crowley EM, Roeder K, Bina M. 1997 . A statistical model for locating regulatory regions in genomic DNA. J . Mol . Biol . , 268(1):8-14 .
28• D'Haeseleer P, Wen X, Fuhrman S., Somogyi R. 1999. Linear modeling of mRNA expression levels during CNS development and injury. Pacific Symp. Biocomp. 99, 4152.
29• Datta S. 2003. Comparisons and validation of statistical clustering techniques for microarray gene expression data. Bioinformatics, 19(4): 459-66.
30• Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan Z, Schilstra MJ, Clarke PJ, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L and Bolouri H. 2002. A genomic regulatory network for development. Science, 295(5560): 1669-78.
31• de Jong H. 2002. Modeling and simulation of genetic regulatory systems: a literature review. J Comput Biol, 9(1): 67-103.
32• D'Haeseleer P., Liang S. and Somogyi R. 2000. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics, 16(8): 707-26.
33• Duggan DJ, Bittner M, Chen Y, Meltzer P and Trent JM. 1999. Expression profiling using cDNA microarrays. Nat Genet, 21(1 Suppl): 10-4.
34• Eisen MB, Spellman PT, Brown PO and Botstein D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A, 95(25): 14863-8.
35• Erb RS, Michaels GS. 1999. Linear Modeling of mRNA Expression Levels During CNS Development and Injury , Pacific Symposium on Biocomputing , 4: 53-64.
36• Fayyad UM, Piatetsky-shapiro G, Smyth P. 1996. Advances in knowledge discovery and data mining. California :AAAI/ MIT Press.
37• Friedman N., Linial M., Nachman I. and Pe'er D. 2000. Using Bayesian networks to analyze expression data. J Comput Biol, 7(3-4): 601-20.
38• Gasch AP and Eisen MB. 2002. Exploring the conditional coregulation of yeast gene expression through fuzzy k-means clustering. Genome Biol, 3(11): RESEARCH0059.
39• Ge H, Liu Z, Church GM and Vidal M. 2001. Correlation between transcriptome and interactome mapping data from Saccharomyces cerevisiae. Nat Genet, 29(4): 482-6.
40• Getz G, Levine E and Domany E. 2000. Coupled two-way clustering analysis of gene microarray data. Proc Natl Acad Sci U S A, 97(22): 12079-84.
41• Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD and Lander ES. 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286(5439): 531-7.
42• Gordon AE. 1981. Classification: methods for the exploratory analysis of multivariate data. Chapman & Hall , New York .
43• Hastie T, Tibshirani R, Eisen MB, Alizadeh A, Levy R, Staudt L, Chan WC, Botstein D and Brown P. 2000. 'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns. Genome Biol, 1(2): RESEARCH0003.
44• Helden JV, Andre B, Collado-Vides J. 1998. Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies, J. Mol. Biol., 281: 827-842.
45• Holter NS , Maritan A, Cieplak M, Fedoroff NV and Banavar JR. 2001. Dynamic modeling of gene expression data. Proc Natl Acad Sci U S A, 98(4): 1693-8.
46• Ideker T, Galitski T and Hood L. 2001. A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet, 2(343-72.
47• Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgarner R, Goodlett DR, Aebersold R and Hood L. 2001. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science, 292(5518): 929-34.
48• Jabson J. 1992. Applied multivariate data analysis: categorical and multivariate methods. Springer, New York .
49• Jacobs Anderson JS, Parker R. 2000. Computational identification of cis-acting elements affecting post-transcriptional control of gene expression in Saccharomyces cerevisiae. Nucleic Acids Res 2000 Apr 1;28(7):1604-17.
50• Jansen R, Greenbaum D and Gerstein M. 2002. Relating whole-genome expression data with protein-protein interactions. Genome Res, 12(1): 37-46.
51• Jansen R, Yu H, Greenbaum D, Kluger Y, Krogan NJ, Chung S, Emili A, Snyder M, Greenblatt JF and Gerstein M. 2003. A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science, 302(5644): 449-53.
52• Jensen LJ. 2000. Automatic discovery of regulatory patterns in promoter regions, Bioinformatics, 16: 326-333.
53• Kaufman L. 1990. Finding Groups in data: An introduction to cluster analysis, John Wiley & Sons, New York .
54• Kohonen T. 1997. Self-organizing map. Springer, Berlin .
55• Kozian DH , Kirschbaum BJ. 1999. Comparative gene-expression analysis. Trends Biotech ., 17:7378.
56• Liang S, Fuhrman S, Somogyi R. 1998. A General Reverse Engineering Algorithm for Inference of Genetic Network Architectures, Pacific Symposium on Biocomputing, 3:18-29.
57• Ji X, Yuan Y, Li-Ling J, Li Y and Sun Z. 2004. HMMGEP: clustering gene expression data using hidden Markov models. Bioinformatics .
58• Kerr MK and Churchill GA. 2001. Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments. Proc Natl Acad Sci U S A, 98(16): 8961-5.
59• Khan J, Saal LH, Bittner ML, Chen Y, Trent JM and Meltzer PS. 1999. Expression profiling in cancer using cDNA microarrays. Electrophoresis, 20(2): 223-9.
60• Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C and Meltzer PS. 2001. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med, 7(6): 673-9.
61• Kitano H. 2002. Systems biology: a brief overview. Science, 295(5560): 1662-4.
62• Kluger Y, Basri R, Chang JT and Gerstein M. 2003. Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res, 13(4): 703-16.
63• Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B, Wyrick JJ, Tagne JB, Volkert TL, Fraenkel E, Gifford DK and Young RA. 2002. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 298(5594): 799-804.
64• Li Y, Campbell C and Tipping M. 2002. Bayesian automatic relevance determination algorithms for classifying gene expression data. Bioinformatics, 18(10): 1332-9.
65• Lipshutz RJ, Fodor SP, Gingeras TR and Lockhart DJ. 1999. High density synthetic oligonucleotide arrays. Nat Genet, 21(1 Suppl): 20-4.
66• Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H and Brown EL. 1996. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol, 14(13): 1675-80.
67• Park PJ, Butte AJ and Kohane IS. 2002. Comparing expression profiles of genes with similar promoter regions. Bioinformatics, 18(12): 1576-84.
68• McAdams HH, Arkin A. 1997. Stochastic mechanisms in gene expression. Proc Natl. Acad. Sci. USA, 94:814819.
69• Michael BE, Paul TS, Patrick OB, Botsietin D. 1998. Cluster analysis and display of genomewide expression patterns, Proc. Natl. Acad. Sci. USA, 95: 14863-4868.
70• Park PJ, Butte AJ and Kohane IS. 2002. Comparing expression profiles of genes with similar promoter regions. Bioinformatics, 18(12): 1576-84.
71• Patrick D, et al. 1999. Gene expression data analysis and modeling, Pacific Symposium on Biocomputing , 1999 , 4.
72• Persidis A . 2000 . Data mining in biotechnology . NATURE BIOTECHNOLOGY, 18:237-238.
73• Pickert L, Reuter I, Klawonn F, Wingender E. 1998. Transcription regulatory region analysis using signal detection and fuzzy clustering. Bioinformatics , 14(3):244-51.
74• Pilpel Y, Sudarsanam P and Church GM. 2001. Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet, 29(2): 153-9.
75• Qian J, Kluger Y, Yu H and Gerstein M. 2003. Identification and correction of spurious spatial correlations in microarray data. Biotechniques, 35(1): 42-4, 46, 48.
76• Qian J, Dolled-Filhart M, Lin J, Yu H and Gerstein M. 2001. Beyond synexpression relationships: local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions. J Mol Biol, 314(5): 1053-66.
77• Qian J, Lin J, Luscombe NM , Yu H and Gerstein M. 2003. Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data. Bioinformatics, 19(15): 1917-26.
78• Quackenbush J. 2001. Computational analysis of microarray data. Nat Rev Genet, 2(6): 418-27.
79• Ramoni MF, Sebastiani P and Kohane IS. 2002. Cluster analysis of gene expression dynamics. Proc Natl Acad Sci U S A, 99(14): 9121-6.
80• Raychaudhuri S, Stuart JM and Altman RB. 2000. Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac Symp Biocomput : 455-66.
81• Roth FP, Hughes JD, Estep PW, Church GM. 1998. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat. Biotechnol., 16:939945.
82• Rzhetsky A, Koike T, Kalachikov S, Gomez SM, Krauthammer M, Kaplan SH, Kra P, Russo JJ, Friedman C. 2000 . A knowledge model for analysis and simulation of regulatory networks Bioinformatics 2000 Dec;16(12):1120-8 .
83• Schena M, Shalon D, Davis RW, Brown PO . 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270:467470.
84• Segal E, Taskar B, Gasch A, Friedman N and Koller D. 2001. Rich probabilistic models for gene expression. Bioinformatics, 17 Suppl 1(S243-52.
85• Sharan R, Shamir R. 2000. Click: A clustering algorithm with applications to gene expression analysis. In Proceeding of 8 th Annual International Conference on Intelligent Systems for Molecular Biology, (ISMB'00), 307-316.
86• Somogyi R, Sniegoski C. 1996. Complexity, 1: 45-63.
87• Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P and Borresen-Dale AL. 2001. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A, 98(19): 10869-74.
88• Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell, 9(12): 3273-3297.
89• Streicher J, Donat MA, Strauss B, Sporle R, Schughart K , Muller GB. 2000. Computer-based three-dimensional visualization of developmental gene expression. Nature genetics , 25.
90• Stuart JM, Segal E, Koller D and Kim SK. 2003. A gene-coexpression network for global discovery of conserved genetic modules. Science, 302(5643): 249-55.
91• Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR. 1999. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA , 96(6): 2907-12.
92• Tavazoie S, Hughes JD, Campbell MJ, Cho RJ and Church GM. 1999. Systematic determination of genetic network architecture. Nat Genet, 22(3): 281-5.
93• Tornow S and Mewes HW. 2003. Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Res, 31(21): 6283-9.
94• Tsukahara Y, Lian Z, Zhang X, Whitney C, Kluger Y, Tuck D, Yamaga S, Nakayama Y, Weissman SM and Newburger PE. 2003. Gene expression in human neutrophils during activation and priming by bacterial lipopolysaccharide. J Cell Biochem, 89(4): 848-61.
95• Tusher VG, Tibshirani R and Chu G. 2001. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A, 98(9): 5116-21.
96• Usama MF. 1996. Data mining and knowledge discovery: making sense outof data. IEEE Expert, 20-25.
97• van 't Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R and Friend SH. 2002. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415(6871): 530-6.
98• Wahde M , Hertz J. 1999. Coarse-grained reversed engineering of genetic regulatory networks. IPCAT 99.
99• Weaver DC, Workman CT , Stormo GD. 1999. Modeling Regulatory Networks with Weight Matrices , Pacific Symposium on Biocomputing , 4:112-123.
100• West M., Blanchette C., Dressman H., Huang E., Ishida S., Spang R., Zuzan H., Olson J. A., Jr., Marks J. R. and Nevins J. R. 2001. Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci U S A, 98(20): 11462-7.
101• Yeung KY and Ruzzo WL. 2001. Principal component analysis for clustering gene expression data. Bioinformatics, 17(9): 763-74.
102• Yeung KY, Fraley C, Murua A, Raftery AE and Ruzzo WL. 2001. Model-based clustering and data transformations for gene expression data. Bioinformatics, 17(10):977-87.
103• Yeung LK, Szeto LK, Liew AW and Yan H. 2004. Dominant spectral component analysis for transcriptional regulations using microarray time-series data. Bioinformatics, 20(5): 742-9.
104• Yu H, Luscombe NM , Qian J and Gerstein M. 2003. Genomic analysis of gene expression relationships in transcriptional regulatory networks. Trends Genet, 19(8): 422-7.
105• Zhang MQ. 1998. Identification of human gene core promoters in silico. Genome Res , 8(3):319-26.
106• Zhang R , Zhang CT. 1994. Z Curves, An Intutive Tool for Visualizing and Analyzing the DNA Sequences. Journal of Biomolecular Structure & Dynamics, ISSN 0739-1102 Volume 11, Issue Number 4 , Adnine Press.
107. Zhou X, Kao MC and Wong WH. 2002. Transitive functional annotation by shortest-path analysis of gene expression data. Proc Natl Acad Sci U S A, 99(20): 12783-8.