Mosquito-borne flavivirus RNA genomes encode one long open reading frame flanking 5′- and 3′-untranslated regions (5′- and 3′-UTRs) which contain cis -acting RNA elements playing important roles for viral RNA translation and replication. The viral RNA encodes a single polyprotein, which is processed into three structural proteins and seven nonstructural (NS) proteins. The regions coding for the seven NS proteins are sufficient for replication of the RNA. The sequences encoding the structural genes can be deleted except for two short regions. The first one encompasses 32 amino acid (aa) residues from the N-terminal coding sequence of capsid (C) and the second, 27 aa region from the C-terminus of envelope (E) protein. The deleted region can be substituted with a gene coding for a readily quantifiable reporter to give rise to a subgenomic reporter replicon. Replicons containing a variety of reporter genes and marker genes for construction of stable mammalian cell lines are valuable reagents for studying the effects of mutations in translation and/or replication in isolation from processes like the entry and assembly of the virus particles. Here we describe the construction of two West Nile virus (WNV) replicons by overlap extension PCR and standard recombinant DNA techniques. One has a Renilla luciferase (Rluc) reporter gene followed by an internal ribosome entry site (element) for cap-independent translation of the open reading frame encompassing the carboxy-terminal sequence of E to NS5. The second replicon has in tandem the Rluc gene, foot and mouth disease virus 2A, and neomycin phosphotransferase gene that allows establishment of a stable mammalian cell line expressing the Rluc reporter in the presence of the neomycin analog, G418. The stable replicon-expressing Vero cell line has been used for cell-based screening and determination of EC50 values for antiviral compounds that inhibited WNV replication.