丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Nonviral siRNA Delivery for Gene Silencing in Neurodegenerative Diseases

互联网

641
Linking genes with the underlying mechanisms of diseases is one of the biggest challenges of genomics-driven drug discovery research. Designing an inhibitor for any neurodegenerative disease that effectively halts the pathogenicity of the disease is yet to be achieved. The challenge lies in crossing the blood-brain barrier (BBB)/blood-cerebrospinal fluid barrier (BCSFB) to reach the catalytic pockets of the enzyme/protein involved in the molecular mechanism of the disease process. Designing siRNA with exquisite specificity may result in selective suppression of the disease-linked gene. Although siRNA is the most promising method, it loses its potency in downregulating the gene due to its inherent instability, off-target effects, and lack of on-target effective delivery systems. Viral as well as nonviral delivery methods have been effectively tested in vivo for silencing of molecular targets and have resulted in significant efficacy in animal models of Alzheimer’s disease, amyotrophic lateral sclerosis (ALS), anxiety, depression, encephalitis, glioblastoma, Huntington’s disease, neuropathic pain, and spinocerebellar ataxia. To realize the full therapeutic potential of siRNA for neurodegenerative diseases, we need to overcome many hurdles and challenges such as selecting suitable tissue-specific delivery vectors, minimizing the off-target effects, and achieving distribution in sufficient concentrations at the target tissue without any side effects. Cationic nanoparticle-mediated targeted siRNA delivery for therapeutic purposes has gained considerable clinical importance as a result of its promising efficacy.
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序