丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Overview of Experimental Models of the Blood‐Brain Barrier in CNS Drug Discovery

互联网

2935
  • Abstract
  • Table of Contents
  • Figures
  • Literature Cited

Abstract

 

The blood?brain barrier (BBB) is a physical and metabolic entity that isolates the brain from the systemic circulation. The barrier consists of tight junctions between endothelial cells that contain egress transporters and catabolic enzymes. To cross the BBB, a drug must possess the appropriate physicochemical properties to achieve a sufficient time?concentration profile in brain interstitial fluid (ISF). In this overview, we review techniques to measure BBB permeation, which is evidenced by the free concentration of compound in brain ISF over time. We consider a number of measurement techniques, including in vivo microdialysis and brain receptor occupancy following perfusion. Consideration is also given to the endothelial and nonendothelial cell systems used to assess both the BBB permeation of a test compound and its interactions with egress transporters, and computer models employed for predicting passive permeation and the probability of interactions with BBB transporters. Curr. Protoc. Pharmacol . 62:7.15.1?7.15.30. © 2013 by John Wiley & Sons, Inc.

Keywords: blood?brain barrier; brain disorders; drug discovery; neuroscience; in vivo microdialysis; MDCK cells; receptor occupancy; brain medicines; brain disorders

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Structure and Function of the BBB
  • The BBB and Immune System Function
  • Assessing BBB Permeability
  • Physicochemical Determinants of Transcellular BBB Transport
  • Assessing Efflux Transport
  • Brain Pharmacokinetics, Pharmacodynamics, and their Relationship
  • Conclusions
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   Figure 7.15.1 The blood‐brain barrier. Endothelial cells are joined by cell adhesion molecules to form a permeability barrier (the blood‐brain barrier) between blood and brain interstitial fluid. Other components of the blood–brain barrier include pericytes, glial cells (astrocyte endfeet), and the basal membrane. These cells form an integrated (neurovascular) unit that controls critical BBB functions.
    View Image
  •   Figure 7.15.2 Localization of the major compound efflux transporters on brain capillary endothelial cells of the blood‐brain barrier (BBB). They include P‐glycoprotein (P‐gp), multidrug‐resistant protein (MRP)‐1 to MRP6 and breast cancer resistance protein (BCRP). These ATP‐binding cassette proteins transport a variety of substrates, including amino acids, sugars, drugs, toxins, lipids, sterols, endogenous metabolites, nucleotides, and ions. In addition to these ABC transporters, several members of the organic anion‐transporting‐polypeptide (OATP) family and the organic anion transporter (OAT) family are expressed in brain endothelial cells. In the OAT family, there is evidence for OAT3 expression in human brain capillary endothelial cells with predominant abluminal localization.
    View Image
  •   Figure 7.15.3 A schematic diagram showing the various routes of transport across the blood‐brain barrier (BBB). (A ) Under normal circumstances, the tight junctions severely restrict penetration of hydrophilic compounds. (B ) Lipophilic compounds with a molecular weight <450 Da can diffuse across the BBB; this is the route by which most CNS drugs enter the brain. (C ) Both hydrophilic and lipophilic compounds can be transported out of the brain by a variety of egress transporters, principally P‐glycoprotein and BCRP. (D ) The BBB contains transport proteins (carriers) for glucose, amino acids, nucleosides, and other substances. (E ) Certain proteins, such as insulin and transferrin, are transported by specific receptor‐mediated endocytosis and transcytosis. (F ) Plasma proteins, such as albumin, are poorly transported, but cationization can increase their uptake by adsorptive‐mediated endocytosis and transcytosis. Modified from Begley ().
    View Image
  •   Figure 7.15.4 Concentration‐time profile in plasma following administration of a compound. T max = time to reach maximal concentration. T 1/2 = the period of time required for the concentration or amount of a compound to be reduced by one‐half. C AE = concentration required to cause an adverse event. C max = the maximal concentration achieved. C TE = the concentration required to evoke a therapeutic effect. AUC = ∫ Cdt , and represents a measure of total drug exposure. The therapeutic ratio = C AE / C max .
    View Image
  •   Figure 7.15.5 Structure of BBB tight junctions. The tight junctions contain occludin and claudins, particularly types 3, 5, and 12, which associate and bind to each other across the intercellular cleft. Both the claudins and occludin are associated with the scaffolding proteins, zonula occludens 1, 2, and 3 (ZO‐1 to ZO‐3), which are, in turn, linked (via cingulin dimers) to the actin/myosin cytoskeletal system within the cell. This system is activated by increases in the concentration of intracellular calcium. The role of the junction‐associated molecules (JAMs) is not yet clear, but like the endothelial cell‐selective adhesion molecule (ESAM), it is a member of the immunoglobulin superfamily. Other proteins that span the intercellular cleft and are bound by homophilic adhesion constitute adherens junctions. They are the platelet endothelial cell adhesion molecule (PECAM‐1), also known as cluster of differentiation 31 (CD31), and VE‐cadherin.
    View Image
  •   Figure 7.15.6 Use of Transwell apparatus cells to provide a measure of the BBB permeation of compounds and their ability to act as P‐gp substrates. Monolayers of cells (e.g., MDCK cells expressing the gene for human P‐gp) are cultured on a semipermeable membrane to form tight cell‐cell junctions. The inner well containing the cells is called the apical (A) compartment while the outer well is called the basolateral (B) compartment. A CNS‐active agent is added to either compartment A or to compartment B and the movement of CNS‐active agent is measured over time and P app values are determined.
    View Image
  •   Figure 7.15.7 A microdialysis probe of concentric design. The probe is stereotaxically placed into the CNS (usually the brain) and isotonic perfusate is pumped through the probe at a slow flow rate. CNS‐active compound in the interstitial fluid then diffuses through the semipermeable membrane at the end of the probe and the flow of perfusate moves it out of the probe, where the dialysate is collected for subsequent analysis.
    View Image
  •   Figure 7.15.8 Model of the disposition of a CNS‐active compound in blood, brain, and CSF. The unbound concentration of a CNS‐active agent in blood [ C u(blood) ] is in equilibrium with the bound concentration in blood [ C (blood) ] and determines its unbound concentration in brain interstitial fluid [ C u(brain ISF ] and cerebrospinal fluid [ C u(CSF) )] by equilibration across the blood–brain barrier (BBB) and the blood‐CSF barrier (BCSFB), respectively. Clearance from brain ISF occurs by bulk flow [ Cl (bulk) ] and brain metabolic clearance [ Cl (metab) ], and the unbound concentration of CNS‐active agent in CSF [ C u(CSF) ] is in equilibrium with its bound concentration in CSF [ C (CSF) ]. Movement of CNS‐active agents through both the BBB and the BCSFB can occur by passive diffusion (red arrows), active uptake (green arrows), or active efflux (blue arrows).
    View Image

Videos

Literature Cited

Literature Cited
   Abbott, N.J. 2004. Evidence for bulk flow of brain interstitial fluid: Significance for physiology and pathology. Neurochem. Int. 45:545‐552.
   Abbott, N.J. 2005. Dynamics of CNS barriers: Evolution, differentiation, and modulation. Cell. Mol. Neurobiol. 25:5‐23.
   Abbott, N.J., Khan, E.U., Rollinson, C.M., Reichel, A., Janigro, D., Dombrowski, S.M., Dobbie, M.S., and Begley, D.J. 2002. Drug resistance in epilepsy: The role of the blood–brain barrier. Novartis Foundation Symposium. 243:38‐47; discussion 47‐53, 180‐185.
   Abbott, N.J., Rönnbäck, L., and Hansson, E. 2006. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci. 7:41‐53.
   Abbott, N.J., Patabendige, A.A., Dolman, D.E., Yusof, S.R., and Begley, D.J. 2010. Structure and function of the blood‐brain barrier. Neurobiol. Dis. 37:13‐25.
   Alavijeh, M.S., Chishty, M., Qaiser, M.Z., and Palmer, A.M. 2005. Drug metabolism and pharmacokinetics, the blood‐brain barrier, and central nervous system drug discovery. NeuroRx 2:554‐571.
   Alavijeh, M.S. and Palmer, A.M. 2010. Measurement of the pharmacokinetics and pharmacodynamics of neuroactive compounds. Neurobiol. Dis. 37:38‐47.
   Aschner, M., Fitsanakis, V.A., dos Santos, A.P., Olivi, L., and Bressler, J.P. 2006. Blood‐brain barrier and cell‐cell interactions: Methods for establishing in vitro models of the blood‐brain barrier and transport measurements. Methods Mol. Biol. 341:1‐15.
   Banker, M.J. and Clark, T.H. 2008. Plasma/serum protein binding determinations. Curr. Drug Metab. 9:854‐859.
   Banks, W.A. and Erickson, M.A. 2010. The blood–brain barrier and immune function and dysfunction. Neurobiol. Dis. 37:26‐32.
   Barar, J., Gumbleton, M., Asadi, M., and Omidi, Y. 2010. Barrier functionality and transport machineries of human ECV304 cells. Med. Sci. Monitor 16:BR52‐BR60.
   Bartholomäus, I., Kawakami, N., Odoardi, F., Schläger, C., Miljkovic, D., Ellwart, J.W., Klinkert, W.E.F., Flügel‐Koch, C., Issekutz, T.B., Wekerle, H., and Flügel, A. 2009. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 462:94‐98.
   Begley, D.J. 2004a. ABC transporters and the blood‐brain barrier. Curr. Pharmaceut. Design 10:1295‐1312.
   Begley, D.J. 2004b. Delivery of therapeutic agents to the central nervous system: The problems and the possibilities. Pharmacol. Ther. 104:29‐45.
   Bickel, U., Yoshikawa, T., and Pardridge, W.M. 2001. Delivery of peptides and proteins through the blood–brain barrier. Adv. Drug Del. Rev. 46:247‐279.
   Bolboacă, S.D. and Jäntschi, L. 2011. Predictivity approach for quantitative structure‐property models. Application for blood‐brain barrier permeation of diverse drug‐like compounds. Int. J. Mol. Sci. 12:4348‐4364.
   Bundgaard, C., Jørgensen, M., and Mørk, A. 2007. An integrated microdialysis rat model for multiple pharmacokinetic/pharmacodynamic investigations of serotonergic agents. J. Pharmacol. Toxicol. Methods 55:214‐223.
   Bundgaard, C., Jensen, C.J.N., and Garmer, M. 2012. Species comparison of in vivo P‐glycoprotein‐mediated brain efflux using mdr1a‐deficient rats and mice. Drug Metab. Disposition 40:461‐466.
   Butt, A.M., Jones, H.C., and Abbott, N.J. 1990. Electrical resistance across the blood–brain barrier in anaesthetized rats: A developmental study. J. Physiol. 429:47‐62.
   Cecchelli, R., Dehouck, B., Descamps, L., Fenart, L., Buée‐Scherrer, V., Duhem, C., Lundquist, S., Rentfel, M., Torpier, G., and Dehouck, M.P. 1999. In vitro model for evaluating drug transport across the blood‐brain barrier. Adv. Drug Del. Rev. 36:165‐178.
   Cecchelli, R., Berezowski, V., Lundquist, S., Culot, M., Renftel, M., Dehouck, M.‐P., and Fenart, L. 2007. Modelling of the blood–brain barrier in drug discovery and development. Nat. Rev. Drug Discov. 6:650‐661.
   Chaurasia, C.S., Müller, M., Bashaw, E.D., Benfeldt, E., Bolinder, J., Bullock, R., Bungay, P.M., DeLange, E.C.M., Derendorf, H., Elmquist, W.F., Hammarlund‐Udenaes, M., Joukhadar, C., Kellogg, D.L. Jr., Lunte, C.E., Nordstrom, C.H., Rollema, H., Sawchuk, R.J., Cheung, B.W.Y., Shah, V.P., Stahle, L., Ungerstedt, U., Welty, D.F., and Yeo, H. 2007. AAPS‐FDA workshop white paper: Microdialysis principles, application and regulatory perspectives. Pharmaceut. Res. 24:1014‐1025.
   Chefer, V.I., Thompson, A.C., Zapata, A., and Shippenberg, T.S. 2009. Overview of brain microdialysis. In Current Protocols in Neuroscience (C. Gerfen, A. Holmes, D. Sibley, P. Skolnick, and S. Wray, eds.) pp. 7.1.1‐7.1.28. John Wiley & Sons, Hoboken, N.J.
   Chen, L., Li, Y., Yu, H., Zhang, L., and Hou, T. 2012. Computational models for predicting substrates or inhibitors of P‐glycoprotein. Drug Discov. Today 17:343‐351.
   Chishty, M., Begley, D.J., Abbott, N.J., and Reichel, A. 2003. Functional characterisation of nucleoside transport in rat brain endothelial cells. Neuroreport 14:1087‐1090.
   Coisne, C., Dehouck, L., Faveeuw, C., Delplace, Y., Miller, F., Landry, C., Morissette, C., Fenart, L., Cecchelli, R., Tremblay, P., and Dehouck, B. 2005. Mouse syngenic in vitro blood–brain barrier model: A new tool to examine inflammatory events in cerebral endothelium. Lab. Invest. 85:734‐746.
   Copeland, R.A. 2010. The dynamics of drug‐target interactions: Drug‐target residence time and its impact on efficacy and safety. Exp. Opin. Drug Discovery 5:305‐310.
   Cserr, H.F. and Patlak, C.S. 1993. Secretion and bulk flow of interstitial fluid. In Physiology and Pharmacology of the Blood–Brain Barrier, Vol. 103 (M.W.B. Bradbury, ed.) pp. 245‐253. Springer, New York.
   Cunha‐Vaz, J., Bernardes, R., and Lobo, C. 2011. Blood‐retinal barrier. Eur. J. Ophthalmol. 21:S3‐S9.
   Dallas, S., Miller, D.S., and Bendayan, R. 2006. Multidrug resistance‐associated proteins: Expression and function in the central nervous system. Pharmacol. Rev. 58:140‐161.
   Darvesh, A.S., Carroll, R.T., Geldenhuys, W.J., Gudelsky, G.A., Klein, J., Meshul, C.K., and Van der Schyf, C.J. 2011. In vivo brain microdialysis: Advances in neuropsychopharmacology and drug discovery. Exp. Opin. Drug Discov. 6:109‐127.
   de Lange, E.C. and Danhof, M. 2002. Considerations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: Implications of the barriers between blood and brain. Clin. Pharmacokinet. 41:691‐703.
   Deane, R. and Bradbury, M.W. 1990. Transport of lead‐203 at the blood‐brain barrier during short cerebrovascular perfusion with saline in the rat. J. Neurochem. 54:905‐914.
   Dehouck, M.‐P., Méresse, S., Delorme, P., Fruchart, J.C., and Cecchelli, R. 1990. An easier, reproducible, and mass‐production method to study the blood–brain barrier in vitro. J. Neurochem. 54:1798‐1801.
   Deli, M.A., Ábrahám, C.S., Kataoka, Y., and Niwa, M. 2005. Permeability studies on in vitro blood–brain barrier models: Physiology, pathology, and pharmacology. Cell. Mol. Neurobiol. 25:59‐127.
   Demel, M.A., Krämer, O., Ettmayer, P., Haaksma, E.E., and Ecker, G.F. 2009. Predicting ligand interactions with ABC transporters in ADME. Chem. Biodivers. 6:1960‐1969.
   Dijk, S.N., Francis, P.T., Stratmann, G.C., and Bowen, D.M. 1995. NMDA‐induced glutamate and aspartate release from rat cortical pyramidal neurones: Evidence for modulation by a 5‐HT1A antagonist. Br. J. Pharmacol. 115:1169‐1174.
   Dombrowski, S.M., Desai, S.Y., Marroni, M., Cucullo, L., Goodrich, K., Bingaman, W., Mayberg, M.R., Bengez, L., and Janigro, D. 2001. Overexpression of multiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 42:1501‐1506.
   Doran, A., Obach, R.S., Smith, B.J., Hosea, N.A., Becker, S., Callegari, E., Chen, C., Chen, X., Choo, E., Cianfrogna, J., Cox, L.M., Gibbs, J.P., Gibbs, M.A., Hatch, H., Hop, C.E.C.A., Kasman, I.N., LaPerle, J., Liu, J., Liu, X., Logman, M., Maclin, D., Nedza, F.M., Nelson, F., Olson, E., Rahematpura, S., Raunig, D., Rogers, S., Schmidt, K., Spracklin, D.K., Szewc, M., Troutman, M., Tseng, E., Tu, M., Van Deusen, J.W., Venkatakrishnan, K., Walens, G., Wang, E.Q., Wong, D., Yasgar, A.S., and Zhang, C. 2005. The impact of P‐glycoprotein on the disposition of drugs targeted for indications of the central nervous system: Evaluation using the MDR1A/1B knockout mouse model. Drug Metab. Disposition 33:165‐174.
   Elmeliegy, M.A., Carcaboso, A.M., Tagen, M., Bai, F., and Stewart, C.F. 2011. Role of ATP‐binding cassette and solute carrier transporters in erlotinib CNS penetration and intracellular accumulation. Clin. Cancer Res. 17:89‐99.
   Engelhardt, B. 2008. Immune cell entry into the central nervous system: Involvement of adhesion molecules and chemokines. J. Neurol. Sci. 274:23‐26.
   Engelhardt, B. and Ransohoff, R.M. 2005. The ins and outs of T‐lymphocyte trafficking to the CNS: Anatomical sites and molecular mechanisms. Trends Immunol. 26:485‐495.
   Engelhardt, B., Kempe, B., Merfeld‐Clauss, S., Laschinger, M., Furie, B., Wild, M.K., and Vestweber, D. 2005. P‐selectin glycoprotein ligand 1 is not required for the development of experimental autoimmune encephalomyelitis in SJL and C57BL/6 mice. J. Immunol. 175:1267‐1275.
   Fridén, M., Gupta, A., Antonsson, M., Bredberg, U., and Hammarlund‐Udenaes, M. 2007. In vitro methods for estimating unbound drug concentrations in the brain interstitial and intracellular fluids. Drug Metab. Disposition 35:1711‐1719.
   Fridén, M., Bergström, F., Wan, H., Rehngren, M., Ahlin, G., Hammarlund‐Udenaes, M., and Bredberg, U. 2011. Measurement of unbound drug exposure in brain: Modeling of pH partitioning explains diverging results between the brain slice and brain homogenate methods. Drug Metab. Disposition 39:353‐362.
   Gabathuler, R. 2010. Approaches to transport therapeutic drugs across the blood–brain barrier to treat brain diseases. Neurobiol. Dis. 37:48‐57.
   Galea, I., Bechmann, I., and Perry, V.H. 2007. What is immune privilege (not)? Trends Immunol. 28:12‐18.
   Ganong, W.F. 2000. Circumventricular organs: Definition and role in the regulation of endocrine and autonomic function. Clin. Exp. Pharmacol. Physiol. 27:422‐427.
   Garberg, P., Ball, M., Borg, N., Cecchelli, R., Fenart, L., Hurst, R.D., Lindmark, T., Mabondzo, A., Nilsson, J.E., Raub, T.J., Stanimirovic, D., Terasaki, T., Öberg, J.‐O., and Österberg, T. 2005. In vitro models for the blood‐brain barrier. Toxicol. In Vitro 19:299‐334.
   Geldenhuys, W.J., Allen, D.D., and Bloomquist, J.R. 2012. Novel models for assessing blood–brain barrier drug permeation. Exp. Opin. Drug Metab. Toxicol. 8:647‐653.
   Goodman, F.R., Weiss, G.B., and Alderdice, M.T. 1973. On the measurement of extracellular space in slices prepared from different rat brain areas. Neuropharmacology 12:867‐873.
   Guilloux, J.‐P., David, D.J., Guiard, B.P., Chenu, F., Repérant, C., Toth, M., Bourin, M., and Gardier, A.M. 2006. Blockade of 5‐HT1A receptors by (+/‐)‐pindolol potentiates cortical 5‐HT outflow, but not antidepressant‐like activity of paroxetine: Microdialysis and behavioral approaches in 5‐HT1A receptor knockout mice. Neuropsychopharmacology 31:2162‐2172.
   Gumbleton, M. and Audus, K.L. 2001. Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood‐brain barrier. J. Pharmaceut. Sci. 90:1681‐1698.
   Guo, X., Geng, M., and Du, G. 2005. Glucose transporter 1, distribution in the brain and in neural disorders: Its relationship with transport of neuroactive drugs through the blood‐brain barrier. Biochem. Genet. 43:175‐187.
   Gupta, A., Chatelain, P., Massingham, R., Jonsson, E.N., and Hammarlund‐Udenaes, M. 2006. Brain distribution of cetirizine enantiomers: comparison of three different tissue‐to‐plasma partition coefficients: K(p), K(p,u), and K(p,uu). Drug Metab. Dispos. 34:318‐323.
   Hagenbuch, B. and Meier, P.J. 2004. Organic anion transporting polypeptides of the OATP/SLC21 family: Phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Pflügers Arch. 447:653‐665.
   Hartmann, C., Zozulya, A., Wegener, J., and Galla, H.J. 2007. The impact of glia‐derived extracellular matrices on the barrier function of cerebral endothelial cells: An in vitro study. Exp. Cell Res. 313:1318‐1325.
   Hatherell, K., Couraud, P.‐O., Romero, I.A., Weksler, B., and Pilkington, G.J. 2011. Development of a three‐dimensional, all‐human in vitro model of the blood–brain barrier using mono‐, co‐, and tri‐cultivation Transwell models. J. Neurosci. Methods 199:223‐229.
   Hawkins, B.T. and Davis, T.P. 2005. The blood‐brain barrier/neurovascular unit in health and disease. Pharmacol. Rev. 57:173‐185.
   Hellwig, K. and Gold, R. 2011. Progressive multifocal leukoencephalopathy and natalizumab. J. Neurol. 258:1920‐1928.
   International Transporter Consortium, Giacomini, K.M., Huang, S.‐M., Tweedie, D.J., Benet, L.Z., Brouwer, K.L.R., Chu, X., Dahlin, A., Evers, R., Fischer, V., Hillgren, K.M., Hoffmaster, K.A., Ishikawa, T., Keppler, D., Kim, R.B., Lee, C.A., Niemi, M., Polli, J.W., Sugiyama, Y., Swaan, P.W., Ware, J.A., Wright, S.H., Yee, S.W., Zamek‐Gliszczynski, M.J., and Zhang, L. 2010. Membrane transporters in drug development. Nat. Rev. Drug Discov. 9:215‐236.
   Jeffrey, P. and Summerfield, S.G. 2007. Challenges for blood–brain barrier (BBB) screening. Xenobiotica 37:1135‐1151.
   Jeffrey, P. and Summerfield, S. 2010. Assessment of the blood–brain barrier in CNS drug discovery. Neurobiol. Dis. 37:33‐37.
   Johnson, P.H., Frank, D., and Costantino, H.R. 2008. Discovery of tight junction modulators: Significance for drug development and delivery. Drug Discov. Today 13:261‐267.
   Josserand, V., Pélerin, H., de Bruin, B., Jego, B., Kuhnast, B., Hinnen, F., Ducongé, F., Boisgard, R., Beuvon, F., Chassoux, F., Daumas‐Duport, C., Ezan, E., Dollé, F., Mabondzo, A., and Tavitian, B. 2006. Evaluation of drug penetration into the brain: A double study by in vivo imaging with positron emission tomography and using an in vitro model of the human blood–brain barrier. J. Pharmacol. Exp. Therapeut. 316:79‐86.
   Kakee, A., Terasaki, T., and Sugiyama, Y. 1996. Brain efflux index as a novel method of analyzing efflux transport at the blood–brain barrier. J. Pharmacol. Exp. Therapeut. 277:1550‐1559.
   Kalvass, J.C. and Maurer, T.S. 2002. Influence of nonspecific brain and plasma binding on CNS exposure: Implications for rational drug discovery. Biopharm. Drug Dispos. 23:327‐338.
   Kannan, P., John, C., Zoghbi, S.S., Halldin, C., Gottesman, M.M., Innis, R.B., and Hall, M.D. 2009. Imaging the function of P‐glycoprotein with radiotracers: Pharmacokinetics and in vivo applications. Clin. Pharmacol. Therapeut. 86:368‐377.
   Kelder, J., Grootenhuis, P.D., Bayada, D.M., Delbressine, L.P., and Ploemen, J.P. 1999. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of drugs. Pharmaceut. Res. 16:1514‐1519.
   Kepe, V., Barrio, J.R., Huang, S.‐C., Ercoli, L., Siddarth, P., Shoghi‐Jadid, K., Cole, G.M., Satyamurthy, N., Cummings, J.L., Small, G.W., and Phelps, M.E. 2006. Serotonin 1A receptors in the living brain of Alzheimer's disease patients. Proc. Natl. Acad. Sci. U.S.A. 103:702‐707.
   Krishnamurthy, P. and Schuetz, J.D. 2006. Role of ABCG2/BCRP in biology and medicine. Annu. Rev. Pharmacol. Toxicol. 46:381‐410.
   Kuteykin‐Teplyakov, K., Luna‐Tortós, C., Ambroziak, K., and Loscher, W. 2010. Differences in the expression of endogenous efflux transporters in MDR1‐transfected versus wildtype cell lines affect P‐glycoprotein mediated drug transport. Br. J. Pharmacol. 160:1453‐1463.
   Larochelle, C., Alvarez, J.I., and Prat, A. 2011. How do immune cells overcome the blood–brain barrier in multiple sclerosis? FEBS Lett. 585:3770‐3780.
   Le, S., Gruner, J.A., Mathiasen, J.R., Marino, M.J., and Schaffhauser, H. 2008. Correlation between ex vivo receptor occupancy and wake‐promoting activity of selective H3 receptor antagonists. J. Pharmacol. Exp. Therapeut. 325:902‐909.
   Li, M.W.M., Mruk, D.D., and Cheng, C.Y. 2012. Gap junctions and blood‐tissue barriers. Adv. Exp. Med. Biol. 763:260‐280.
   Lin, J.H. 2004. How significant is the role of P‐glycoprotein in drug absorption and brain uptake? Drugs Today 40:5‐22.
   Liu, X., Smith, B.J., Chen, C., Callegari, E., Becker, S.L., Chen, X., Cianfrogna, J., Doran, A.C., Doran, S.D., Gibbs, J.P., Hosea, N., Liu, J., Nelson, F.R., Szewc, M.A., and Van Deusen, J. 2006. Evaluation of cerebrospinal fluid concentration and plasma free concentration as a surrogate measurement for brain free concentration. Drug Metab. Disposition 34:1443‐1447.
   Liu, X., Chen, C., and Smith, B.J. 2008. Progress in brain penetration evaluation in drug discovery and development. J. Pharmacol. Exp. Therapeut. 325:349‐356.
   Lladó‐Pelfort, L., Assié, M.B., Newman‐Tancredi, A., Artigas, F., and Celada, P. 2012. In vivo electrophysiological and neurochemical effects of the selective 5‐HT1A receptor agonist, F13640, at pre‐ and postsynaptic 5‐HT1A receptors in the rat. Psychopharmacology 221:261‐272.
   Loryan, I., Fridén, M., and Hammarlund‐Udenaes, M. 2013. The brain slice method for studying drug distribution in the CNS. Fluids Barriers CNS 10:6.
   Löscher, W. and Potschka, H. 2005a. Blood‐brain barrier active efflux transporters: ATP‐binding cassette gene family. NeuroRx 2:86‐98.
   Löscher, W. and Potschka, H. 2005b. Role of drug efflux transporters in the brain for drug disposition and treatment of brain diseases. Progr. Neurobiol. 76:22‐76.
   Löscher, W. and Potschka, H. 2005c. Drug resistance in brain diseases and the role of drug efflux transporters. Nat. Rev. Neurosci. 6:591‐602.
   Löscher, W., Luna‐Tortós, C., Römermann, K., and Fedrowitz, M. 2011. Do ATP‐binding cassette transporters cause pharmacoresistance in epilepsy? Problems and approaches in determining which antiepileptic drugs are affected. Curr. Pharmaceut. Des. 17:2808‐2828.
   Lu, H. and Tonge, P.J. 2010. Drug‐target residence time: Critical information for lead optimization. Curr. Opin. Chem. Biol. 14:467‐474.
   Mahar Doan, K.M., Humphreys, J.E., Webster, L.O., Wring, S.A., Shampine, L.J., Serabjit‐Singh, C.J., Adkison, K.K., and Polli, J.W. 2002. Passive permeability and P‐glycoprotein‐mediated efflux differentiate central nervous system (CNS) and non‐CNS marketed drugs. J. Pharmacol. Exp. Therapeut. 303:1029‐1037.
   Mahringer, A., Ott, M., Reimold, I., Reichel, V., and Fricker, G. 2011. The ABC of the blood‐brain barrier―regulation of drug efflux pumps. Curr. Pharmaceut. Des. 17:2762‐2770.
   Mairinger, S., Erker, T., Muller, M., and Langer, O. 2011. PET and SPECT radiotracers to assess function and expression of ABC transporters in vivo. Curr. Drug Metab. 12:774‐792.
   Martin, I. 2004. Prediction of blood–brain barrier penetration: Are we missing the point? Drug Discov. Today 9:161‐162.
   Mazur, C.S., Marchitti, S.A., Dimova, M., Kenneke, J.F., Lumen, A., and Fisher, J. 2012. Human and rat ABC transporter efflux of bisphenol A and bisphenol A glucuronide: Interspecies comparison and implications for pharmacokinetic assessment. Toxicol. Sci. 128:317‐325.
   Mehdipour, A.R. and Hamidi, M. 2009. Brain drug targeting: A computational approach for overcoming blood–brain barrier. Drug Discov. Today 14:1030‐1036.
   Mensch, J., Jaroskova, L., Sanderson, W., Melis, A., Mackie, C., Verreck, G., Brewster, M.E., and Augustijns, P. 2010. Application of PAMPA‐models to predict BBB permeability including efflux ratio, plasma protein binding and physicochemical parameters. Int. J. Pharm. 395:182‐197.
   Morgan, P., Van Der Graaf, P.H., Arrowsmith, J., Feltner, D.E., Drummond, K.S., Wegner, C.D., and Street, S.D.A. 2012. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discov. Today 17:419‐424.
   Murakami, H., Takanaga, H., Matsuo, H., Ohtani, H., and Sawada, Y. 2000. Comparison of blood–brain barrier permeability in mice and rats using in situ brain perfusion technique. Am. J. Physiol. Heart Circ. Physiol. 279:H1022‐H1028.
   Nag, S. 2011. Morphology and properties of astrocytes. Methods Mol. Biol. 686:69‐100.
   Naik, P. and Cucullo, L. 2012. In vitro blood–brain barrier models: Current and perspective technologies. J. Pharmaceut. Sci. 101:1337‐1354.
   Nakagawa, S., Deli, M.A., Kawaguchi, H., Shimizudani, T., Shimono, T., Kittel, A., Tanaka, K., and Niwa, M. 2009. A new blood–brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem. Int. 54:253‐263.
   Palmer, A.M. 2010a. The blood–brain barrier. Neurobiol. Dis. 37:1‐2.
   Palmer, A.M. 2010b. The role of the blood–CNS barrier in CNS disorders and their treatment. Neurobiol. Dis. 37:3‐12.
   Palmer, A.M. 2012a. Pharmacotherapeuetic options for the treatment of multiple sclerosis. Clin. Med. Insights Therapeut. 4:145‐168.
   Palmer, A.M. 2012b. Brain disorders, brain medicines and the blood‐brain barrier. In Horizons in Neuroscience Research, Vol. 6 (A. Costa and E. Villalba, eds.) pp. 87‐122. Nova Science Publishers, Hauppauge, N.Y.
   Palmer, A.M. 2013. Multiple sclerosis and the blood‐central nervous system barrier. Cardiovasc. Psychiat. Neurol. 2013:530356.
   Palmer, A.M. and Alavijeh, M.S. 2012. Translational CNS medicines research. Drug Discov. Today 17:1068‐1078.
   Palmer, A.M., Marion, D.W., Botscheller, M.L., Swedlow, P.E., Styren, S.D., and DeKosky, S.T. 1993. Traumatic brain injury‐induced excitotoxicity assessed in a controlled cortical impact model. J. Neurochem. 61:2015‐2024.
   Pardridge, W.M. 2007. Blood–brain barrier delivery of protein and non‐viral gene therapeutics with molecular Trojan horses. J. Control. Rel. 122:345‐348.
   Patabendige, A., Skinner, R.A., and Abbott, N.J. 2013. Establishment of a simplified in vitro porcine blood–brain barrier model with high transendothelial electrical resistance. Brain Res. 1521:1‐15.
   Ploeger, B.A., van der Graaf, P.H., and Danhof, M. 2009. Incorporating receptor theory in mechanism‐based pharmacokinetic‐pharmacodynamic (PK‐PD) modeling. Drug Metab. Pharmacokinet. 24:3‐15.
   Presciutti, M., Schmidt, J.M., and Alexander, S. 2009. Neuromonitoring in intensive care: Focus on microdialysis and its nursing implications. J. Neurosci. Nursing 41:131‐139.
   Raza, M.W., Shad, A., Pedler, S.J., and Karamat, K.A. 2005. Penetration and activity of antibiotics in brain abscess. J. Coll. Physicians Surgeons Pakistan 15:165‐167.
   Reichel, A. 2006. The role of blood‐brain barrier studies in the pharmaceutical industry. Curr. Drug Metab. 7:183‐203.
   Reijerkerk, A., Lakeman, K.A.M., Drexhage, J.A.R., van Het Hof, B., van Wijck, Y., van der Pol, S.M.A., Kooij, G., Geerts, D., and de Vries, H.E. 2012. Brain endothelial barrier passage by monocytes is controlled by the endothelin system. J. Neurochem. 121:730‐737.
   Reynolds, I.J. and Palmer, A.M. 1991. Regional variations in [3H]MK801 to rat brain N‐methyl‐D‐aspartate receptors. J. Neurochem. 56:1731‐1740.
   Ritter, M., Lang, F., Grübl, G., and Embacher, H.G. 1990. Determination of cell membrane resistance in cultured renal epithelioid (MDCK) cells: Effects of cadmium and mercury ions. Pflügers Arch. 417:29‐36.
   Rodemer, C. and Haucke, V. 2008. Clathrin/AP‐2‐dependent endocytosis: A novel playground for the pharmacological toolbox? In Protein‐Protein Interactions as New Drug Targets, Vol. 186: Handbook of Experimental Pharmacology (E. Klussmann and J. Scott, eds.) pp. 105‐122. Springer‐Verlag, Berlin, Heidelberg.
   Roux, F. and Couraud, P.‐O. 2005. Rat brain endothelial cell lines for the study of blood–brain barrier permeability and transport functions. Cell. Mol. Neurobiol. 25:41‐58.
   Sá‐Pereira, I., Brites, D., and Brito, M.A. 2012. Neurovascular unit: A focus on pericytes. Mol. Neurobiol. 45:327‐347.
   Sage, P.T. and Carman, C.V. 2009. Settings and mechanisms for trans‐cellular diapedesis. Front. Biosci. 14:5066‐5083.
   Schinkel, A.H., Wagenaar, E., Mol, C.A., and van Deemter, L. 1996. P‐glycoprotein in the blood‐brain barrier of mice influences the brain penetration and pharmacological activity of many drugs. J. Clin. Invest. 97:2517‐2524.
   Schwab, D., Fischer, H., Tabatabaei, A., Poli, S., and Huwyler, J. 2003. Comparison of in vitro P‐glycoprotein screening assays: Recommendations for their use in drug discovery. J. Med. Chem. 46:1716‐1725.
   Shah, G.N. and Mooradian, A.D. 1997. Age‐related changes in the blood‐brain barrier. Exp. Gerontol. 32:501‐519.
   Sharom, F.J. 2008. ABC multidrug transporters: Structure, function and role in chemoresistance. Pharmacogenomics 9:105‐127.
   Sharom, F.J. 2011. The P‐glycoprotein multidrug transporter. Essays Biochem. 50:161‐178.
   Sharp, T. and Hjorth, S. 1990. Application of brain microdialysis to study the pharmacology of the 5‐HT1A autoreceptor. J. Neurosci. Methods 34:83‐90.
   Shen, D.D., Artru, A.A., and Adkison, K.K. 2004. Principles and applicability of CSF sampling for the assessment of CNS drug delivery and pharmacodynamics. Adv. Drug Deliv. Rev. 56:1825‐1857.
   Shen, S. and Zhang, W. 2010. ABC transporters and drug efflux at the blood‐brain barrier. Rev. Neurosci. 21:29‐53.
   Sheremata, W.A., Minagar, A., Alexander, J.S., and Vollmer, T. 2005. The role of alpha‐4 integrin in the aetiology of multiple sclerosis: Current knowledge and therapeutic implications. CNS Drugs 19:909‐922.
   Shin, K., Wang, Q., and Margolis, B. 2007. PATJ regulates directional migration of mammalian epithelial cells. EMBO Rep. 8:158‐164.
   Smith, Q.R. 1996. Brain perfusion systems for studies of drug uptake and metabolism in the central nervous system. In Models for Assessing Drug Absorption and Metabolism, Vol. 8: Pharmaceutical Biotechnology (R.T. Borchardt, P.L. Smith, and G. Wilson, eds.) pp. 285‐307. Springer Science+Business Media, New York.
   Smith, Q.R. 2003. A review of blood–brain barrier transport techniques. Methods Mol. Med. 89:193‐208.
   Smith, Q.R. and Rapoport, S.I. 1986. Cerebrovascular permeability coefficients to sodium, potassium, and chloride. J. Neurochem. 46:1732‐1742.
   Smith, Q.R. and Allen, D.D. 2003. In situ brain perfusion technique. Methods Mol. Med. 89:209‐218.
   Spector, R. 2010. Nature and consequences of mammalian brain and CSF efflux transporters: Four decades of progress. J. Neurochem. 112:13‐23.
   Stockner, T., de Vries, S.J., Bonvin, A.M., Ecker, G.F., and Chiba, P. 2009. Data‐driven homology modelling of P‐glycoprotein in the ATP‐bound state indicates flexibility of the transmembrane domains. FEBS J. 276:964‐972.
   Stolp, H.B. and Dziegielewska, K.M. 2009. Review: Role of developmental inflammation and blood–brain barrier dysfunction in neurodevelopmental and neurodegenerative diseases. Neuropathol. Appl. Neurobiol. 35:132‐146.
   Summerfield, S.G., Read, K., Begley, D.J., Obradovic, T., Hidalgo, I.J., Coggon, S., Lewis, A.V., Porter, R.A., and Jeffrey, P. 2007. Central nervous system drug disposition: The relationship between in situ brain permeability and brain free fraction. J. Pharmacol. Exp. Therapeut. 322:205‐213.
   Syvänen, S. and Hammarlund‐Udenaes, M. 2010. Using PET studies of P‐gp function to elucidate mechanisms underlying the disposition of drugs. Curr. Topics Med. Chem. 10:1799‐1809.
   Toyoda, Y., Hagiya, Y., Adachi, T., Hoshijima, K., Kuo, M.T., and Ishikawa, T. 2008. MRP class of human ATP binding cassette (ABC) transporters: Historical background and new research directions. Xenobiotica 38:833‐862.
   Vandenhaute, E., Sevin, E., Hallier‐Vanuxeem, D., Dehouck, M.‐P., and Cecchelli, R. 2012. Case study: Adapting in vitro blood–brain barrier models for use in early‐stage drug discovery. Drug Discov. Today 17:285‐290.
   Wang, Q., Rager, J.D., Weinstein, K., Kardos, P.S., Dobson, G.L., Li, J., and Hidalgo, I.J. 2005. Evaluation of the MDR‐MDCK cell line as a permeability screen for the blood‐brain barrier. Int. J. Pharmaceut. 288:349‐359.
   Wang, Y. and Welty, D.F. 1996. The simultaneous estimation of the influx and efflux blood‐brain barrier permeabilities of gabapentin using a microdialysis‐pharmacokinetic approach. Pharmaceut. Res. 13:398‐403.
   Weikop, P., Egestad, B., and Kehr, J. 2004. Application of triple‐probe microdialysis for fast pharmacokinetic/pharmacodynamic evaluation of dopamimetic activity of drug candidates in the rat brain. J. Neurosci. Methods 140:59‐65.
   Weksler, B.B., Subileau, E.A., Perrière, N., Charneau, P., Holloway, K., Leveque, M., Tricoire‐Leignel, H., Nicotra, A., Bourdoulous, S., Turowski, P., Male, D.K., Roux, F., Greenwood, J., Romero, I.A., and Couraud, P.O. 2005. Blood‐brain barrier‐specific properties of a human adult brain endothelial cell line. FASEB J. 19:1872‐1874.
   Westerhout, J., Ploeger, B., Smeets, J., Danhof, M., and de Lange, E.C. 2012. Physiologically based pharmacokinetic modeling to investigate regional brain distribution kinetics in rats. AAPS J. 14:543‐553.
   Westholm, D.E., Rumbley, J.N., Salo, D.R., Rich, T.P., and Anderson, G.W. 2008. Organic anion‐transporting polypeptides at the blood‐brain and blood‐cerebrospinal fluid barriers. Curr. Topics Dev. Biol. 80:135‐170.
   Wilhelm, I., Fazakas, C., and Krizbai, I.A. 2011. In vitro models of the blood–brain barrier. Acta Neurobiol. Exp. 71:113‐128.
   Willis, C.L., Brooks, T.A., and Davis, T.P. 2008. Chronic inflammatory pain and the neurovascular unit: A central role for glia in maintaining BBB integrity? Curr. Pharmaceut. Des. 14:1625‐1643.
   Yoon, C.H., Kim, S.J., Shin, B.S., Lee, K.C., and Yoo, S.D. 2006. Rapid screening of blood‐brain barrier penetration of drugs using the immobilized artificial membrane phosphatidylcholine column chromatography. J. Biomol. Screen. 11:13‐20.
   Yosef, N., Xia, R.H., and Ubogu, E.E. 2010. Development and characterization of a novel human in vitro blood‐nerve barrier model using primary endoneurial endothelial cells. J. Neuropathol. Exp. Neurol. 69:82‐97
   Zhang, Y., Li, C.S.W., Ye, Y., Johnson, K., Poe, J., Johnson, S., Bobrowski, W., Garrido, R., and Madhu, C. 2006. Porcine brain microvessel endothelial cells as an in vitro model to predict in vivo blood‐brain barrier permeability. Drug Metab. Disposition 34:1935‐1943.
   Zhao, R., Kalvass, J.C., and Pollack, G.M. 2009. Assessment of blood–brain barrier permeability using the in situ mouse brain perfusion technique. Pharmaceut. Res. 26:1657‐1664.
   Zhou, S.F. 2008. Structure, function and regulation of P‐glycoprotein and its clinical relevance in drug disposition. Xenobiotica 38:802‐832.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library
 
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序