Quantifying Cellular Dynamics by Fluorescence Resonance Energy Transfer (FRET) Microscopy
互联网
- Abstract
- Table of Contents
- Materials
- Figures
- Literature Cited
Abstract
The cell is a spatially organized system whose function emerges from the complex interaction of molecular components. Such local interaction of nanometer?sized molecules generates patterns that span throughout the cell. Those patterns, in turn, regulate the molecular interactions. Understanding such simultaneous bidirectional causation requires quantifying the spatio?temporal progression of biochemical reactions in the context of a living cell. Due to its ability to resolve micrometer?sized structures, biological microscopy has been instrumental to the discovery and understanding of living systems. Functional fluorescence microscopy allows a cellular dynamic topographic map of proteins to be overlaid with topological information on the causality that determines protein state. Here we describe how Förster/fluorescence resonance energy transfer (FRET) can be used to measure the phosphorylation state of proteins in the context of the cell. Curr. Protoc. Neurosci. 63:5.22.1?5.22.14. © 2013 by John Wiley & Sons, Inc.
Keywords: quantification of cellular processes; fluorescence microscopy; Förster resonance energy transfer (FRET); acceptor photobleaching; fluorescence lifetime imaging microscopy (FLIM)
Table of Contents
- Introduction
- Basic Protocol 1: FRET Microscopy on Fixed Cells
- Basic Protocol 2: Protein Labeling with Cy3.5
- Reagents and Solutions
- Commentary
- Literature Cited
- Figures
Materials
Basic Protocol 1: FRET Microscopy on Fixed Cells
Materials
Basic Protocol 2: Protein Labeling with Cy3.5
Materials
|
Figures
-
Figure 5.22.1 Measuring the phosphorylation of the epidermal growth factor receptor (EGFR) using acceptor photobleaching with laser scanning confocal microscopy. Left column: Images of the donor (EGFR‐mCitrine) before (upper row) and after (bottom row) photobleaching. Middle column: Corresponding images of the acceptor (PY72‐Cy3.5). Notice how the intensity of the donor increases where the acceptor has been bleached. Right column: Apparent fluorescence resonance energy transfer efficiency (AFE). As schematized below, a high AFE (as seen in the membrane) means that there is a larger fraction of donor in‐complex with the acceptor (phosphorylated receptor). Scale bar: 20 µm. View Image -
Figure 5.22.2 Pharmacological intervention with the Ras acylation cycle affects PDEδ activity. Time‐lapse FLIM analyses of mCit‐NrasG12D‐ and mCh‐PDEδ‐transfected Madin‐Darby canine kidney (MDCK) cells show the loss of PDEδ‐NrasG12D interaction after thioesterase inhibition by palmostatin‐B treatment. Upper two rows: fluorescence intensity distribution of the indicated fluorescent fusion proteins. Lower two rows: average fluorescence lifetime (τav ) in nanoseconds and molar fraction (α) of mCit‐NrasG12D interacting with mCh‐PDEδ. Scale bar: 10 µm. Reproduced from Chandra et al. () View Image
Videos
Literature Cited
Literature Cited | |
Adams, S.R., Harootunian, A.T., Buechler, Y.J., Taylor, S.S., and Tsien, R.Y. 1991. Fluorescence ratio imaging of cyclic‐amp in single cells. Nature 349:694‐697. | |
Bastiaens, P.I.H. and Jovin, T.M. 1996. Microspectroscopic imaging tracks the intracellular processing of a signal transduction protein: Fluorescent‐labeled protein kinase C beta I. Proc. Natl. Acad. Sci. U.S.A. 93:8407‐8412. | |
Bastiaens, P.I.H. and Squire, A. 1999. Fluorescence lifetime imaging microscopy: Spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9:48‐52. | |
Bastiaens, P.I.H., Majoul, I.V., Verveer, P.J., Soling, H.D., and Jovin, T.M. 1996. Imaging the intracellular trafficking and state of the AB(5) quaternary structure of cholera toxin. EMBO J. 15:4246‐4253. | |
Becker, W., Bergmann, A., Hink, M.A., Konig, K., Benndorf, K., and Biskup, C. 2004. Fluorescence lifetime imaging by time‐correlated single‐photon counting. Microscopy Res. Techn. 63:58‐66. | |
Chandra, A., Grecco, H.E., Pisupati, V., Perera, D., Cassidy, L., Skoulidis, F., Ismail, S.A., Hedberg, C., Hanzal‐Bayer, M., Venkitaraman, A.R., Wittinghofer, A., and Bastiaens, P.I.H. 2012. The GDI‐like solubilizing factor PDE delta sustains the spatial organization and signalling of Ras family proteins. Nat. Cell Biol. 14:148‐158. | |
Day, R.N. 1998. Visualization of Pit‐1 transcription factor interactions in the living cell nucleus by fluorescence resonance energy transfer microscopy. Mol. Endocrinol. 12:1410‐1419. | |
Förster, T. 1948. Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 2:55‐75. | |
Gallagher, S. R. 2012. One‐dimensional SDS gel electrophoresis of proteins. Curr. Protoc. Mol. Biol. 97:10.2A.1‐10.2A.44. | |
Gordon, G.W., Berry, G., Liang, X.H., Levine, B., and Herman, B. 1998. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys. J. 74:2702‐2713. | |
Grashoff, C., Hoffman, B.D., Brenner, M.D., Zhou, R.B., Parsons, M., Yang, M.T., McLean, M.A., Sligar, S.G., Chen, C.S., Ha, T., and Schwartz, M.A. 2010. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263‐266. | |
Gratton, E., Breusegem, S., Sutin, J., and Ruan, Q.Q. 2003. Fluorescence lifetime imaging for the two‐photon microscope: Time‐domain and frequency‐domain methods. J. Biomed. Optics 8:381‐390. | |
Grecco, H.E., Roda‐Navarro, P., and Verveer, P.J. 2009. Global analysis of time correlated single photon counting FRET‐FLIM data. Optics Express 17:6493‐6508. | |
Grecco, H.E., Roda‐Navarro, P., Girod, A., Hou, J., Frahm, T., Truxius, D.C., Pepperkok, R., Squire, A., and Bastiaens, P.I.H. 2010. In situ analysis of tyrosine phosphorylation networks by FLIM on cell arrays. Nat. Methods 7:U467‐U480. | |
Jares‐Erijman, E.A. and Jovin, T.M. 2003. FRET imaging. Nat. Biotechnol. 21:1387‐1395. | |
Kollner, M. and Wolfrum, J. 1992. How many photons are necessary for fluorescence‐lifetime measurements. Chem. Phys. Lett. 200:199‐204. | |
Krohn, R.I. 2011. The colorimetric detection and quantitation of total protein. Curr. Protoc. Cell Biol. 52:A.3H.1‐A.3H.28. | |
Mahajan, N.P., Linder, K., Berry, G., Gordon, G.W., Heim, R., and Herman, B. 1998. Bcl‐2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nat. Biotechnol. 16:547‐552. | |
Mao, S., Benninger, R.K.P., Yan, Y.L., Petchprayoon, C., Jackson, D., Easley, C.J., Piston, D.W., and Marriott, G. 2008. Optical lock‐in detection of FRET using synthetic and genetically encoded optical switches. Biophys. J. 94:4515‐4524. | |
Medintz, I.L., Trammell, S.A., Mattoussi, H., and Mauro, J.M. 2004. Reversible modulation of quantum dot photoluminescence using a protein‐bound photochromic fluorescence resonance energy transfer acceptor. J. Am. Chem. Soc. 126:30‐31. | |
Miyawaki, A., Llopis, J., Heim, R., McCaffery, J.M., Adams, J.A., Ikura, M., and Tsien, R.Y. 1997. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882‐887. | |
Ng, T., Squire, A., Hansra, G., Bornancin, F., Prevostel, C., Hanby, A., Harris, W., Barnes, D., Schmidt, S., Mellor, H., Bastiaens, P.I.H., and Parker, P.J. 1999. Imaging protein kinase C alpha activation in cells. Science 283:2085‐2089. | |
Song, L., Jares‐Erijman, E., and Jovin, T.M. 1999. Use of a photochromic compound as a light‐switchable acceptor in fluorescence resonance energy transfer. Biophys. J. 76:A450. | |
Wouters, F.S., Bastiaens, P.I.H., Wirtz, K.W.A., and Jovin, T.M. 1998. FRET microscopy demonstrates molecular association of non‐specific lipid transfer protein (nsL‐TP) with fatty acid oxidation enzymes in peroxisomes. EMBO J. 17:7179‐7189. |