丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Methods of Measuring Thyroglobulin and Peptide-Methylcoumarinamide Hydrolysis by Autoantibodies

互联网

1575
Polyclonal antibodies often serve as the starting point for interesting studies of new antibody functions and their links with immunoregulation and autoimmune disease. For example, the catalytic activity of naturally formed antibodies was first discovered using human autoantibody mixtures (1 ,2 ). Thyroglobulin (Tg), a large water-soluble glycoprotein (mass approx 660 kDa) is a classical target for autoimmune responses. Thyroglobulin is stored in the thyroid colloid and can constitute up to 70% of the total protein in this gland. The protein is iodinated within the thyroid by peroxidase-catalyzed reactions and proteolytic processing of the iodinated Tg leads to formation of the thyroid hormones T3 and T4 . Autoantibodies to Tg are found in >80% of patients with Hashimoto’s thyroiditis, a disease characterized by thyroid damage and hyperthyroidism. Here, we describe a method to measure the catalytic breakdown of Tg by autoantibody fractions. Since Tg contains several repeat domains and antigenic epitopes (3 ,4 ), the hydrolytic specificity of the antibodies was determined using a panel of commercially available peptide-methylcoumarinamide (peptide-MCA) substrates. Cleavage of the amide bond linking an amino acid and the coumarin moiety in these substrates serves as a convenient surrogate for peptide bond hydrolysis. The peptide-MCA substrates have previously been used to assay the activity of endopeptidases and exopeptidases (5 ).
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序