On-Demand Cleavable Linkers for Radioimmunotherapy
互联网
636
Radioimmunotherapy (RIT) using radiolabeled antibodies or its fragments holds great promise for cancer therapy. However, its clinical potential is often limited by the undesirable radiation exposure to normal organs such as liver, kidney, and bone marrow. It is important to develop new strategies in RIT that enable protection of vital organs from radiation exposure while maintaining therapeutic radiation dose to the cancer. One way to achieve this is to clear radiometal rapidly from the circulation after accumulation of radioimmunoconjugates (RIC) in the tumor. Our strategy is to place a highly efficient and specific cleavable linker between radiometal chelate and the tumor targeting agent. Such linker must be resistant to cleavage by enzymes present in the plasma and tumor. After radiotargeting agents have accumulated in the tumor, a cleaving agent (protease) can be administered to the patient “on demand” to cleave the specific linker, resulting in the release of radiometal from the circulating RIC, in a form that can be cleared rapidly by the kidneys. TNKase� , a serine protease tissue plasminogen activator and thrombolytic agent, which has been approved for clinical use in patient with acute myocardial infarction, was selected as an on-demand cleaving agent in our model. TNKase� specific on-demand cleavable (ODC) linkers were identified through screening random internally quenched fluorescent resonance energy transfer (FRET) “one-bead-one-compound” (OBOC) combinatorial peptide libraries. FRET-OBOC peptide libraries containing l -amino acid(s) in the center of the random linear peptide and d -amino acids flanking both sides of the l -amino acid(s) were used for screening. Peptide beads susceptible to TNKase� but resistant to plasma and tumor-associated protease cleavage were isolated for sequence analysis. The focus of this chapter is on the methods that have been used to identify and characterize ODC linkers and protease-specific substrates.