In situ hybridization can be employed in formalin-fixed, paraffin-embedded tissue sections (FFPT) and allows direct visualization of amplified genes and chromosomes in individual cell nuclei. Fluorescence in situ hybridization (FISH) is the most widely employed method, but the fluorescence preparations suffer from the main disadvantages of fading over time and poor visualization, the latter making it difficult to accurately separate invasive from in situ cancer cells. Chromogenic in situ hybridization (CISH) is a viable alternative to FISH in FFPT as it employs a peroxidase reaction to visualize the chromogen thus allowing the convenience of bright field microscopy and the correlation of the visualized gene amplification with cytomorphology. It is relatively less expensive and allows a permanent record, with several studies attesting to its validity. As with FISH, heat pretreatment and enzyme digestion are two critical components of the protocol. We describe a protocol for CISH in which a microwave-induced target retrieval step is introduced as a replacement for heat pretreatment. The same procedure is performed following enzyme digestion to produce consistent signals in amplified and nonamplified cells that are both larger in size and numbers when compared with those produced by the conventional protocol.