丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Cell‐Based Hepatitis C Virus Infection Fluorescence Resonance Energy Transfer (FRET) Assay for Antiviral Compound Screening

互联网

4001
  • Abstract
  • Table of Contents
  • Materials
  • Figures
  • Literature Cited

Abstract

 

Hepatitis C virus (HCV) affects an estimated 3% of the population and is a leading cause of chronic liver disease worldwide. Since HCV therapeutic and preventative options are limited, the development of new HCV antivirals has become a global health care concern. This has spurred the development of cell?based infectious HCV high?throughput screening assays to test the ability of compounds to inhibit HCV infection. This unit describes methods that may be used to assess the in vitro efficacy of HCV antivirals using a cell?based high?throughput fluorescence resonance energy transfer (FRET) HCV infection screening assay, which allows for the identification of inhibitors that target HCV at any step in the viral life cycle. Basic protocols are provided for compound screening during HCV infection and analysis of compound efficacy using an HCV FRET assay. Support protocols are provided for propagation of infectious HCV and measurement of viral infectivity. Curr. Protoc. Microbiol. 18:17.5.1?17.5.27. © 2010 by John Wiley & Sons, Inc.

Keywords: hepatitis C virus; viral lifecycle; Huh7 cells; dimethylsulfoxide (DMSO); fluorescence resonance energy transfer (FRET); NS3 protease; antivirals; high?throughput screening

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Screening of Anti‐HCV Compounds in Hepatoma Cells
  • Basic Protocol 2: Quantification of HCV Infection Using a Cell‐Based NS3 Protease Assay
  • Support Protocol 1: Generation of HCVcc from In Vitro–Transcribed RNA
  • Support Protocol 2: Generation of HCVcc from Infectious Virus
  • Support Protocol 3: HCVcc Infectivity Titer Analysis
  • Reagents and Solutions
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Screening of Anti‐HCV Compounds in Hepatoma Cells

  Materials
  • Huh7 cells (Japan Health Science Research Resources Bank, cat. no. JCRB0403; http://www.jhsf.or.jp)
  • Huh7 cell maintenance medium (see recipe )
  • Huh7 cell maintenance medium with 1% (v/v) dimethyl sulfoxide (DMSO; tissue culture grade)
  • Compound library
  • HCVcc (stock titer ≥3.25 × 104 ; see protocol 3 and 2)
  • FRET lysis buffer (see recipe ), prechilled to 4°C
  • 75‐cm2 or larger tissue culture flasks
  • 96‐well clear flat‐bottom black microtiter BioCoat tissue culture plates (BD Biosciences)
  • 96‐well U‐bottom microtiter plates
  • Plate seals
  • Additional reagents and equipment for growing mammalian cells (Phelan, )

Basic Protocol 2: Quantification of HCV Infection Using a Cell‐Based NS3 Protease Assay

  Materials
  • Sample plate ( protocol 1 )
  • 5‐FAM/QXL 520 NS3 FRET peptide substrate (AnaSpec; resuspend and distribute into single‐use aliquots upon receipt)
  • 2× FRET assay buffer (AnaSpec)
  • 1 M dithiothreitol (DTT; appendix 2A )
  • Fluorescent microplate reader with 490‐nm excitation and 520‐nm emission filters
  • Shaking platform
  • Centrifuge with microtiter plate carrier

Support Protocol 1: Generation of HCVcc from In Vitro–Transcribed RNA

  Materials
  • pJFH‐1 (HCV JFH‐1 encoding plasmid; Kato et al., )
  • Xba I restriction endonuclease and compatible 10× buffer
  • Buffered phenol, pH 7 to 8 ( appendix 2A )
  • Molecular‐biology‐grade nuclease‐free distilled H 2 O
  • 25:24:1 phenol/chloroform/isoamyl alcohol (see appendix 2A )
  • Chloroform
  • 3 M sodium acetate, pH 7.0 (see appendix 2A )
  • Isopropanol
  • 75% (v/v) ethanol
  • 100% (v/v) ethanol
  • High‐yield in vitro RNA transcription reagents (e.g., Ambion MEGAscript) including:
    • 10× RNA transcription reaction buffer (also see recipe and Lindenbach et al., )
    • dATP, dGTP, dCTP, and dUTP stock solutions (also see appendix 2A )
    • T7 RNA polymerase
    • Nuclease‐free water
    • 2 U/µl DNase (also see appendix 2A )
  • Gel electrophoresis apparatus and reagents including:
    • Molecular‐biology‐grade agarose
    • TE buffer ( appendix 2A )
    • 1% (w/v) ethidium bromide ( appendix 2A )
    • 10× sample loading buffer containing bromphenol blue ( appendix 2A )
    • DNA size ladder
  • Huh7 cells (Japan Health Science Research Resources Bank, cat. no. JCRB0403; http://www.jhsf.or.jp)
  • Huh7 cell maintenance medium (see recipe )
  • Dulbecco's phosphate buffered saline (DPBS) without calcium and magnesium (see recipe in appendix 2A ; prepare with tissue‐culture‐grade H 2 O and omit Ca2+ and Mg2+ )
  • 0.25% trypsin (tissue culture grade) with 2.21 mM EDTA in HBSS (see appendix 2A for HBSS)
  • Serum‐free DMEM and/or Opti‐MEM (both available from Invitrogen), prechilled to 4°C
  • 75‐cm2 (T‐75) or 150‐cm2 (T‐150) tissue culture flasks
  • 50‐ and 15‐ml conical centrifuge tubes
  • Inverted light microscope
  • Refrigerated centrifuge, 4°C
  • 0.4‐cm electroporation cuvettes
  • Electroporator
  • 0.2‐µm cellulose acetate filters for sterilization
  • Additional reagents and equipment for determining DNA and RNA concentration (Gallagher and Desjardins, ), RNA purification by purification kit (Phenol‐Free Total RNA Purification Kit or Ribozol Plus RNA Purification Kit; AMRESCO Inc., http://www.amresco‐inc.com/), lithium chloride precipitation (Diaz‐Ruiz and Kaper, ), spin‐column chromatography, or phenol:chloroform extraction and isopropanol precipitation (Chomczynski and Sacchi, ; Kingston et al., ), and determination of HCVcc infectivity titer ( protocol 5 )

Support Protocol 2: Generation of HCVcc from Infectious Virus

  Materials
  • Huh7 cells (Japan Health Science Research Resources Bank, cat. no. JCRB0403; http://www.jhsf.or.jp)
  • Huh7 cell maintenance medium (see recipe )
  • Post‐transfection generated JFH‐1 HCVcc ( protocol 3 )
  • Dulbecco's phosphate buffered saline (DPBS) without calcium and magnesium (see recipe in appendix 2A ; prepare with tissue‐culture‐grade H 2 O and omit Ca2+ and Mg2+ )
  • 0.25% trypsin (tissue culture grade) with 2.21 mM EDTA in HBSS (see appendix 2A for HBSS)
  • 75‐cm2 and 150‐cm2 tissue culture flasks
  • 50‐ml conical centrifuge tubes (BD Falcon)
  • Refrigerated centrifuge
  • 0.2‐µm cellulose acetate filter for sterilization

Support Protocol 3: HCVcc Infectivity Titer Analysis

  Materials
  • Huh7 cells (Japan Health Science Research Resources Bank, cat. no. JCRB0403)
  • Huh7 cell maintenance medium (see recipe )
  • HCVcc test samples (see protocols above)
  • Huh7 cell maintenance medium with 0.25% (w/v) methylcellulose (see recipe )
  • 4% PFA fixation buffer (see recipe )
  • Dulbecco's phosphate buffered saline (DPBS) without calcium and magnesium (see recipe in appendix 2A ; prepare with tissue‐culture‐grade H 2 O and omit Ca2+ and Mg2+ )
  • DPBS (without Ca2+ and Mg2+) containing 0.3% hydrogen peroxide (prepare immediately before use)
  • Blocking buffer (see recipe )
  • HCV‐specific primary antibody (Ab), e.g.:
    • AR3A, human anti‐HCV E2 antibody (Law et al., )
    • E910, mouse anti‐HCV NS5A antibody (Lindenbach et al., )
    • C750, mouse anti‐HCV Core (Affinity Bioreagents)
  • Binding buffer (see recipe )
  • Appropriate HRP‐conjugated secondary antibody (Ab) such as:
    • DAKOCytomation EnVision+ System‐HRP labeled ready‐to‐use anti‐mouse antibody (for primary Ab raised in mouse)
    • Goat anti‐human HRP‐conjugated antibody (Pierce; for primary Ab raised in human)
  • AEC (3‐amino‐9‐ethylcarbazole) peroxidase substrate solution (BD Biosciences)
  • 50% (v/v) glycerol in H 2 O
  • 96‐well flat‐bottom tissue culture plates
  • 96‐well U‐bottom microtiter plates
  • Inverted light microscope
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   Figure 17.5.1 Sample plate layout for HTS anti‐HCV compound screening. This illustrates a standard plate layout in which two columns have been reserved for controls. However, compound libraries are often provided with only one empty column for the addition of controls. The layout chosen for individual screening campaigns will need to be adapted to accommodate these restrictions, and, if necessary, to avoid areas prone to “edge effect.”
    View Image
  •   Figure 17.5.2 NS3 FRET peptide substrate. (A ) The 5‐FAM/QXL 520 NS3 FRET substrate is an internally quenched peptide with a fluorescent donor (5‐FAM) and acceptor (QXL) on opposing sides of the NS3 protease cleavage site. (B ) FRET protease assay. The donor absorbs energy at 490 nm and emits energy (i.e., fluorescence) at 520 nm. However, when in close contact on an intact peptide, the acceptor absorbs the 520‐nM energy emitted by the donor, preventing fluorescence. Cleavage of the peptide increases the distance between the fluorophores, resulting in proportional 5‐FAM fluorescence. Diagram and figure adapted from AnaSpec product information (http://www.anaspec.com/products/product.asp?id=30173&productid=13982).
    View Image
  •   Figure 17.5.3 Sample plate layout for virus titration. 24 viral serial dilutions can be conveniently performed in each U‐bottom 96‐well microtiter plate. In this example, the wells in rows 1 and 5 are filled with the individual virus samples to be analyzed while the wells in rows 2 to 4 and 6 to 8 are each filled with 180 µl of Huh7 cell maintenance medium. Using a multichannel pipettor, three 1:10 dilutions can be made by transferring 20 µl between wells down each column, beginning with the undiluted virus row and moving on to the 1:10 row, the 1:100 row, and the 1:1000 row. It is important to thoroughly mix the virus dilution by pipetting up and down after each transfer, and to change pipet tips between each transfer.
    View Image

Videos

Literature Cited

Literature Cited
   Alter, H.J. and Seeff, L.B. 2000. Recovery, persistence, and sequelae in hepatitis C virus infection: A perspective on long‐term outcome. Semin. Liver Dis. 20:17‐35.
   Bianchi, E., Steinkuhler, C., Taliani, M., Urbani, A., Francesco, R.D., and Pessi, A. 1996. Synthetic depsipeptide substrates for the assay of human hepatitis C virus protease. Anal. Biochem. 237:239‐244.
   Brown, T., Mackey, K., and Du, T. 2004. Analysis of RNA by northern and slot blot hybridization. Curr. Protoc. Mol. Biol. 67: 4.9.1‐4.9.19.
   Choi, S., Sainz, B., Jr., Corcoran, P., Uprichard, S., and Jeong, H. 2009. Characterization of increased drug metabolism activity in dimethyl sulfoxide (DMSO)‐treated Huh7 hepatoma cells. Xenobiotica 39:205‐217.
   Chomczynski, P. and Sacchi, N. 1987. Single‐step method of RNA isolation by acid guanidinium thiocyanate‐phenol‐chloroform extraction. AnalBiochem 162:156‐159.
   Condit, R. 2007. Principles of virology. In Field's Virology (B. Fields, D. Knipe, P. Howley, and D. Griffin, eds.) pp. 25‐55. Lippincott Williams & Wilkins, Philadelphia.
   Cooper, P.D. 1967. The plaque assay of animal viruses. In Methods in Virology (K. Maramorosch, K. and H. Koprowski, eds.) pp. 243‐311. Academic Press, New York London.
   Diaz‐Ruiz, J. R. and Kaper, J. M. 1978. Isolation of viral double‐stranded RNAs using a LiCl fractionation procedure. Prep. Biochem. 8:1‐17.
   Gallagher, S.R. and Desjardins, P.R. 2006. Quantitation of DNA and RNA by absorption and fluorescence spectroscopy. Curr. Protoc. Mol. Biol. 76:A.3D.1‐A.3D.21.
   Glue, P., Fang, J.W., Rouzier‐Panis, R., Raffanel, C., Sabo, R., Gupta, S.K., Salfi, M., and Jacobs, S. 2000. Pegylated interferon‐alpha2b: Pharmacokinetics, pharmacodynamics, safety, and preliminary efficacy data. Hepatitis C Intervention Therapy Group. Clin. Pharmacol. Ther. 68:556‐567.
   Gosert, R., Egger, D., Lohmann, V., Bartenschlager, R., Blum, H.E., Bienz, K., and Moradpour, D. 2003. Identification of the hepatitis C virus RNA replication complex in Huh‐7 cells harboring subgenomic replicons. J. Virol. 77:5487‐5492.
   Kakiuchi, N., Nishikawa, S., Hattori, M., and Shimotohno, K. 1999. A high throughput assay of the hepatitis C virus nonstructural protein 3 serine proteinase. J. Virol. Methods 80:77‐84.
   Kato, T., Furusaka, A., Miyamoto, M., Date, T., Yasui, K., Hiramoto, J., Nagayama, K., Tanaka, T., and Wakita, T. 2001. Sequence analysis of hepatitis C virus isolated from a fulminant hepatitis patient. J. Med. Virol. 64:334‐339.
   Kato, T., Date, T., Miyamoto, M., Furusaka, A., Tokushige, K., Mizokami, M., and Wakita, T. 2003. Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology 125:1808‐1817.
   Kingston, R., Chomczynski, P., and Sacchi, N. 1996. Guanidine methods for total RNA preparation. Curr. Protoc. Mol. Biol. 36:4.2.1‐4.2.9.
   Law, M., Maruyama, T., Lewis, J., Giang, E., Tarr, A.W., Stamataki, Z., Gastaminza, P., Chisari, F.V., Jones, I.M., Fox, R.I., Ball, J.K., McKeating, J.A., Kneteman, N.M., and Burton, D.R. 2008. Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat. Med. 14:25‐27.
   Lindenbach, B.D. and Rice, C.M. 2005. Unravelling hepatitis C virus replication from genome to function. Nature 436:933‐938.
   Lindenbach, B.D., Evans, M.J., Syder, A.J., Wölk, B., Tellinghuisen, T.L., Liu, C.C., Maruyama, T., Hynes, R.O., Burton, D.R., McKeating, J.A., and Rice, C.M. 2005. Complete replication of hepatitis C virus in cell culture. Science 309:623‐626.
   Nakabayashi, H., Taketa, K., Miyano, K., Yamane, T., and Sato, J. 1982. Growth of human hepatoma cells lines with differentiated functions in chemically defined medium. Cancer Res. 42:3858‐3863.
   Nelson, H. B. and Tang, H. 2006. Effect of cell growth on hepatitis C virus (HCV) replication and a mechanism of cell confluence‐based inhibition of HCV RNA and protein expression. J. Virol. 80:1181‐1190.
   O'Boyle, D.R. 2nd, Nower, P.T., Lemm, J.A., Valeras, L., Sun, J.H., Rigat, K., Colonno, R., and Gao, M. 2005. Development of a cell‐based high‐throughput specificity screen using a hepatitis C virus‐bovine viral diarrhea virus dual replicon assay. Antimicrob. Agents Chemother. 49:1346‐1353.
   Phelan, M. 2007. Basic techniques in mammalian cell culture. Curr. Protoc. Cell Biol. 36:1.1.1‐1.1.18.
   Pietschmann, T., Lohmann, V., Rutter, G., Kurpanek, K., and Bartenschlager, R. 2001. Characterization of cell lines carrying self‐replicating hepatitis C virus RNAs. J. Virol. 75:1252‐1264.
   Reed, L.J. and Muench, H. 1938. A simple method of estimating fifty percent endpoints. Am. J. Hyg. 27:493.
   Sainz, B. Jr. and Chisari, F.V. 2006. Production of infectious hepatitis C virus by well‐differentiated, growth‐arrested human hepatoma‐derived cells. J. Virol. 80:10253‐10257.
   Sainz, B. Jr., Barretto, N., and Uprichard, S.L. 2009. Hepatitis C virus infection in phenotypically distinct Huh7 cell lines. PLoS ONE 4:e6561.
   Taliani, M., Bianchi, E., Narjes, F., Fossatelli, M., Urbani, A., Steinkühler, C., De Francesco, R., and Pessi, A. 1996. A continuous assay of hepatitis C virus protease based on resonance energy transfer depsipeptide substrates. Anal. Biochem. 240:60‐67.
   Wakita, T., Pietschmann, T., Kato, T., Date, T., Miyamoto, M., Zhao, Z., Murthy, K., Habermann, A., Kräusslich, H.G., Mizokami, M., Bartenschlager, R., and Liang, T.J. 2005. Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat. Med. 11:791‐796.
   Williams, R. 2006. Global challenges in liver disease. Hepatology 44:521‐526.
   Windisch, M.P., Frese, M., Kaul, A., Trippler, M., Lohmann, V., and Bartenschlager, R. 2005. Dissecting the interferon‐induced inhibition of hepatitis C virus replication by using a novel host cell line. J. Virol. 79:13778‐13793.
   Yu, X., Sainz, B. Jr. and Uprichard, S.L. 2009. Development of a cell‐based hepatitis C virus infection fluorescent resonance energy transfer assay for high‐throughput antiviral compound screening. Antimicrob. Agents Chemother. 53:4311‐4319.
   Zhang, J.H., Chung, T.D., and Oldenburg, K.R. 1999. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen. 4:67‐73.
   Zhong, J., Gastaminza, P., Cheng, G., Kapadia, S., Kato, T., Burton, D.R., Wieland, S.F., Uprichard, S.L., Wakita, T., and Chisari, F.V. 2005. Robust hepatitis C virus infection in vitro. Proc. Natl. Acad. Sci. U.S.A. 102:9294‐9299.
   Zhong, J., Gastaminza, P., Chung, J., Stamataki, Z., Isogawa, M., Cheng, G., McKeating, J.A., and Chisari, F.V. 2006. Persistent hepatitis C virus infection in vitro: coevolution of virus and host. J. Virol. 80:11082‐11093.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library
 
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
关注公众号
反馈
TOP
打开小程序